Béreux, Nicolas
Fast, accurate training and sampling of Restricted Boltzmann Machines
Béreux, Nicolas, Decelle, Aurélien, Furtlehner, Cyril, Rosset, Lorenzo, Seoane, Beatriz
Thanks to their simple architecture, Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex systems and extracting interpretable insights from data. However, training RBMs, as other energy-based models, on highly structured data poses a major challenge, as effective training relies on mixing the Markov chain Monte Carlo simulations used to estimate the gradient. This process is often hindered by multiple second-order phase transitions and the associated critical slowdown. In this paper, we present an innovative method in which the principal directions of the dataset are integrated into a low-rank RBM through a convex optimization procedure. This approach enables efficient sampling of the equilibrium measure via a static Monte Carlo process. By starting the standard training process with a model that already accurately represents the main modes of the data, we bypass the initial phase transitions. Our results show that this strategy successfully trains RBMs to capture the full diversity of data in datasets where previous methods fail. Furthermore, we use the training trajectories to propose a new sampling method, {\em parallel trajectory tempering}, which allows us to sample the equilibrium measure of the trained model much faster than previous optimized MCMC approaches and a better estimation of the log-likelihood. We illustrate the success of the training method on several highly structured datasets.
Learning a Restricted Boltzmann Machine using biased Monte Carlo sampling
Béreux, Nicolas, Decelle, Aurélien, Furtlehner, Cyril, Seoane, Beatriz
Restricted Boltzmann Machines are simple and powerful generative models that can encode any complex dataset. Despite all their advantages, in practice the trainings are often unstable and it is difficult to assess their quality because the dynamics are affected by extremely slow time dependencies. This situation becomes critical when dealing with low-dimensional clustered datasets, where the time required to sample ergodically the trained models becomes computationally prohibitive. In this work, we show that this divergence of Monte Carlo mixing times is related to a phenomenon of phase coexistence, similar to that which occurs in physics near a first-order phase transition. We show that sampling the equilibrium distribution using the Markov chain Monte Carlo method can be dramatically accelerated when using biased sampling techniques, in particular the Tethered Monte Carlo (TMC) method. This sampling technique efficiently solves the problem of evaluating the quality of a given trained model and generating new samples in a reasonable amount of time. Moreover, we show that this sampling technique can also be used to improve the computation of the log-likelihood gradient during training, leading to dramatic improvements in training RBMs with artificial clustered datasets. On real low-dimensional datasets, this new training method fits RBM models with significantly faster relaxation dynamics than those obtained with standard PCD recipes. We also show that TMC sampling can be used to recover the free-energy profile of the RBM. This proves to be extremely useful to compute the probability distribution of a given model and to improve the generation of new decorrelated samples in slow PCD-trained models.