Goto

Collaborating Authors

 Bäckström, Christer


Time and Space Bounds for Planning

Journal of Artificial Intelligence Research

There is an extensive literature on the complexity of planning, but explicit bounds on time and space complexity are very rare. On the other hand, problems like the constraint satisfaction problem (CSP) have been thoroughly analysed in this respect. We provide a number of upper- and lower-bound results (the latter based on various complexity-theoretic assumptions such as the Exponential Time Hypothesis) for both satisficing and optimal planning. We show that many classes of planning instances exhibit a dichotomy: either they can be solved in polynomial time or they cannot be solved in subexponential time. In many cases, we can even prove closely matching upper and lower bounds. Our results also indicate, analogously to CSPs, the existence of sharp phase transitions. We finally study and discuss the trade-off between time and space. In particular, we show that depth-first search may sometimes be a viable option for planning under severe space constraints.


Plan Reordering and Parallel Execution — A Parameterized Complexity View

AAAI Conferences

Bäckström has previously studied a number of optimization problems for partial-order plans, like finding a minimum deordering (MCD) or reordering (MCR), and finding the minimum parallel execution length (PPL), which are all NP-complete. We revisit these problems, but applying parameterized complexity analysis rather than standard complexity analysis. We consider various parameters, including both the original and desired size of the plan order, as well as its width and height. Our findings include that MCD and MCR are W[2]-hard and in W[P] when parameterized with the desired order size, and MCD is fixed-parameter tractable (fpt) when parameterized with the original order size. Problem PPL is fpt if parameterized with the size of the non-concurrency relation, but para-NP-hard in most other cases. We also consider this problem when the number (k) of agents, or processors, is restricted, finding that this number is a crucial parameter; this problem is fixed-parameter tractable with the order size, the parallel execution length and k as parameter, but para-NP-hard without k as parameter.


Cost-Optimal and Net-Benefit Planning — A Parameterised Complexity View

AAAI Conferences

Cost-optimal planning (COP) uses action costs and asks for a minimum-cost plan. It is sometimes assumed that there is no harm in using actions with zero cost or rational cost. Classical complexity analysis does not contradict this assumption; planning is PSPACE-complete regardless of whether action costs are positive or non-negative, integer or rational. We thus apply parameterised complexity analysis to shed more light on this issue. Our main results are the following. COP is [W2]-complete for positive integer costs, i.e. it is no harder than finding a minimum-length plan, but it is paraNP-hard if the costs are non-negative integers or positive rationals. This is a very strong indication that the latter cases are substantially harder. Net-benefit planning (NBP) additionally assigns goal utilities and asks for a plan with maximum difference between its utility and its cost. NBP is paraNP-hard even when action costs and utilities are positive integers, suggesting that it is harder than COP. In addition, we also analyse a large number of subclasses, using both the PUBS restrictions and restricting the number of preconditions and effects.


Some Fixed Parameter Tractability Results for Planning with Non-Acyclic Domain-Transition Graphs

AAAI Conferences

Bäckström studied the parameterised complexity of planning when the domain-transition graphs (DTGs) are acyclic. He used the parameters d (domain size), k (number of paths in the DTGs) and w (treewidth of the causal graph), and showed that planning is fixed-parameter tractable (fpt) in these parameters, and fpt in only parameter k if the causal graph is a polytree. We continue this work by considering some additional cases of non-acyclic DTGs. In particular, we consider the case where each strongly connected component (SCC) in a DTG must be a simple cycle, and we show that planning is fpt for this case if the causal graph is a polytree. This is done by first preprocessing the instance to construct an equivalent abstraction and then apply Bäckströms technique to this abstraction. We use the parameters d and k , reinterpreting this as the number of paths in the condensation of a DTG, and the two new parameters c (the number of contracted cycles along a path) and p max (an upper bound for walking around cycles, when not unbounded).


Parameterized Complexity and Kernel Bounds for Hard Planning Problems

arXiv.org Artificial Intelligence

The propositional planning problem is a notoriously difficult computational problem. Downey et al. (1999) initiated the parameterized analysis of planning (with plan length as the parameter) and B\"ackstr\"om et al. (2012) picked up this line of research and provided an extensive parameterized analysis under various restrictions, leaving open only one stubborn case. We continue this work and provide a full classification. In particular, we show that the case when actions have no preconditions and at most $e$ postconditions is fixed-parameter tractable if $e\leq 2$ and W[1]-complete otherwise. We show fixed-parameter tractability by a reduction to a variant of the Steiner Tree problem; this problem has been shown fixed-parameter tractable by Guo et al. (2007). If a problem is fixed-parameter tractable, then it admits a polynomial-time self-reduction to instances whose input size is bounded by a function of the parameter, called the kernel. For some problems, this function is even polynomial which has desirable computational implications. Recent research in parameterized complexity has focused on classifying fixed-parameter tractable problems on whether they admit polynomial kernels or not. We revisit all the previously obtained restrictions of planning that are fixed-parameter tractable and show that none of them admits a polynomial kernel unless the polynomial hierarchy collapses to its third level.


The Complexity of Planning Revisited — A Parameterized Analysis

AAAI Conferences

The early classifications of the computational complexity of planning under various restrictions in STRIPS (Bylander) and SAS+ (Bäckström and Nebel) have influenced following research in planning in many ways. We go back and reanalyse their subclasses, but this time using the more modern tool of parameterized complexity analysis. This provides new results that together with the old results give a more detailed picture of the complexity landscape. We demonstrate separation results not possible with standard complexity theory, which contributes to explaining why certain cases of planning have seemed simpler in practice than theory has predicted. In particular, we show that certain restrictions of practical interest are tractable in the parameterized sense of the term, and that a simple heuristic is sufficient to make a well-known partial-order planner exploit this fact.