Azghan, Reza Rahimi
AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset
Farahmand, Ebrahim, Azghan, Reza Rahimi, Chatrudi, Nooshin Taheri, Kim, Eric, Gudur, Gautham Krishna, Thomaz, Edison, Pedrielli, Giulia, Turaga, Pavan, Ghasemzadeh, Hassan
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.
CUDLE: Learning Under Label Scarcity to Detect Cannabis Use in Uncontrolled Environments
Azghan, Reza Rahimi, Glodosky, Nicholas C., Sah, Ramesh Kumar, Cuttler, Carrie, McLaughlin, Ryan, Cleveland, Michael J., Ghasemzadeh, Hassan
Wearable sensor systems have demonstrated a great potential for real-time, objective monitoring of physiological health to support behavioral interventions. However, obtaining accurate labels in free-living environments remains difficult due to limited human supervision and the reliance on self-labeling by patients, making data collection and supervised learning particularly challenging. To address this issue, we introduce CUDLE (Cannabis Use Detection with Label Efficiency), a novel framework that leverages self-supervised learning with real-world wearable sensor data to tackle a pressing healthcare challenge: the automatic detection of cannabis consumption in free-living environments. CUDLE identifies cannabis consumption moments using sensor-derived data through a contrastive learning framework. It first learns robust representations via a self-supervised pretext task with data augmentation. These representations are then fine-tuned in a downstream task with a shallow classifier, enabling CUDLE to outperform traditional supervised methods, especially with limited labeled data. To evaluate our approach, we conducted a clinical study with 20 cannabis users, collecting over 500 hours of wearable sensor data alongside user-reported cannabis use moments through EMA (Ecological Momentary Assessment) methods. Our extensive analysis using the collected data shows that CUDLE achieves a higher accuracy of 73.4%, compared to 71.1% for the supervised approach, with the performance gap widening as the number of labels decreases. Notably, CUDLE not only surpasses the supervised model while using 75% less labels, but also reaches peak performance with far fewer subjects.