Goto

Collaborating Authors

 Azaria, Amos


Fool Me, Fool Me: User Attitudes Toward LLM Falsehoods

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have become central tools in various fields, they often provide inaccurate or false information. This study examines user preferences regarding falsehood responses from LLMs. Specifically, we evaluate preferences for LLM responses where false statements are explicitly marked versus unmarked responses and preferences for confident falsehoods compared to LLM disclaimers acknowledging a lack of knowledge. Additionally, we investigate how requiring users to assess the truthfulness of statements influences these preferences. Surprisingly, 61\% of users prefer unmarked falsehood responses over marked ones, and 69\% prefer confident falsehoods over LLMs admitting lack of knowledge. In all our experiments, a total of 300 users participated, contributing valuable data to our analysis and conclusions. When users are required to evaluate the truthfulness of statements, preferences for unmarked and falsehood responses decrease slightly but remain high. These findings suggest that user preferences, which influence LLM training via feedback mechanisms, may inadvertently encourage the generation of falsehoods. Future research should address the ethical and practical implications of aligning LLM behavior with such preferences.


Ruffle&Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational Tutoring System

arXiv.org Artificial Intelligence

Conversational tutoring systems (CTSs) offer learning experiences through interactions based on natural language. They are recognized for promoting cognitive engagement and improving learning outcomes, especially in reasoning tasks. Nonetheless, the cost associated with authoring CTS content is a major obstacle to widespread adoption and to research on effective instructional design. In this paper, we discuss and evaluate a novel type of CTS that leverages recent advances in large language models (LLMs) in two ways: First, the system enables AI-assisted content authoring by inducing an easily editable tutoring script automatically from a lesson text. Second, the system automates the script orchestration in a learning-by-teaching format via two LLM-based agents (Ruffle&Riley) acting as a student and a professor. The system allows for free-form conversations that follow the ITS-typical inner and outer loop structure. We evaluate Ruffle&Riley's ability to support biology lessons in two between-subject online user studies (N = 200) comparing the system to simpler QA chatbots and reading activity. Analyzing system usage patterns, pre/post-test scores and user experience surveys, we find that Ruffle&Riley users report high levels of engagement, understanding and perceive the offered support as helpful. Even though Ruffle&Riley users require more time to complete the activity, we did not find significant differences in short-term learning gains over the reading activity. Our system architecture and user study provide various insights for designers of future CTSs. We further open-source our system to support ongoing research on effective instructional design of LLM-based learning technologies.


SPRING: Studying the Paper and Reasoning to Play Games

arXiv.org Artificial Intelligence

Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of games as a test bed for LLMs.


Ruffle&Riley: Towards the Automated Induction of Conversational Tutoring Systems

arXiv.org Artificial Intelligence

Conversational tutoring systems (CTSs) offer learning experiences driven by natural language interaction. They are known to promote high levels of cognitive engagement and benefit learning outcomes, particularly in reasoning tasks. Nonetheless, the time and cost required to author CTS content is a major obstacle to widespread adoption. In this paper, we introduce a novel type of CTS that leverages the recent advances in large language models (LLMs) in two ways: First, the system induces a tutoring script automatically from a lesson text. Second, the system automates the script orchestration via two LLM-based agents (Ruffle&Riley) with the roles of a student and a professor in a learning-by-teaching format. The system allows a free-form conversation that follows the ITS-typical inner and outer loop structure. In an initial between-subject online user study (N = 100) comparing Ruffle&Riley to simpler QA chatbots and reading activity, we found no significant differences in post-test scores. Nonetheless, in the learning experience survey, Ruffle&Riley users expressed higher ratings of understanding and remembering and further perceived the offered support as more helpful and the conversation as coherent. Our study provides insights for a new generation of scalable CTS technologies.


Read and Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals

arXiv.org Artificial Intelligence

High sample complexity has long been a challenge for RL. On the other hand, humans learn to perform tasks not only from interaction or demonstrations, but also by reading unstructured text documents, e.g., instruction manuals. Instruction manuals and wiki pages are among the most abundant data that could inform agents of valuable features and policies or task-specific environmental dynamics and reward structures. Therefore, we hypothesize that the ability to utilize human-written instruction manuals to assist learning policies for specific tasks should lead to a more efficient and better-performing agent. We propose the Read and Reward framework. Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers. Our framework consists of a QA Extraction module that extracts and summarizes relevant information from the manual and a Reasoning module that evaluates object-agent interactions based on information from the manual. An auxiliary reward is then provided to a standard A2C RL agent, when interaction is detected. Experimentally, various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.


The Internal State of an LLM Knows When It's Lying

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have shown exceptional performance in various tasks, one of their most prominent drawbacks is generating inaccurate or false information with a confident tone. In this paper, we provide evidence that the LLM's internal state can be used to reveal the truthfulness of statements. This includes both statements provided to the LLM, and statements that the LLM itself generates. Our approach is to train a classifier that outputs the probability that a statement is truthful, based on the hidden layer activations of the LLM as it reads or generates the statement. Experiments demonstrate that given a set of test sentences, of which half are true and half false, our trained classifier achieves an average of 71\% to 83\% accuracy labeling which sentences are true versus false, depending on the LLM base model. Furthermore, we explore the relationship between our classifier's performance and approaches based on the probability assigned to the sentence by the LLM. We show that while LLM-assigned sentence probability is related to sentence truthfulness, this probability is also dependent on sentence length and the frequencies of words in the sentence, resulting in our trained classifier providing a more reliable approach to detecting truthfulness, highlighting its potential to enhance the reliability of LLM-generated content and its practical applicability in real-world scenarios.


Performance of ChatGPT-3.5 and GPT-4 on the United States Medical Licensing Examination With and Without Distractions

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) are predictive models building their response based on the words in the prompts, there is a risk that small talk and irrelevant information may alter the response and the suggestion given. Therefore, this study aims to investigate the impact of medical data mixed with small talk on the accuracy of medical advice provided by ChatGPT. USMLE step 3 questions were used as a model for relevant medical data. We use both multiple choice and open ended questions. We gathered small talk sentences from human participants using the Mechanical Turk platform. Both sets of USLME questions were arranged in a pattern where each sentence from the original questions was followed by a small talk sentence. ChatGPT 3.5 and 4 were asked to answer both sets of questions with and without the small talk sentences. A board-certified physician analyzed the answers by ChatGPT and compared them to the formal correct answer. The analysis results demonstrate that the ability of ChatGPT-3.5 to answer correctly was impaired when small talk was added to medical data for multiple-choice questions (72.1\% vs. 68.9\%) and open questions (61.5\% vs. 44.3\%; p=0.01), respectively. In contrast, small talk phrases did not impair ChatGPT-4 ability in both types of questions (83.6\% and 66.2\%, respectively). According to these results, ChatGPT-4 seems more accurate than the earlier 3.5 version, and it appears that small talk does not impair its capability to provide medical recommendations. Our results are an important first step in understanding the potential and limitations of utilizing ChatGPT and other LLMs for physician-patient interactions, which include casual conversations.


ChatGPT is a Remarkable Tool -- For Experts

arXiv.org Artificial Intelligence

This paper investigates the capabilities of ChatGPT as an automated assistant in diverse domains, including scientific writing, mathematics, education, programming, and healthcare. We explore the potential of ChatGPT to enhance productivity, streamline problem-solving processes, and improve writing style. Furthermore, we highlight the potential risks associated with excessive reliance on ChatGPT in these fields. These limitations encompass factors like incorrect and fictitious responses, inaccuracies in code, limited logical reasoning abilities, overconfidence, and critical ethical concerns of copyrights and privacy violation. We outline areas and objectives where ChatGPT proves beneficial, applications where it should be used judiciously, and scenarios where its reliability may be limited. In light of observed limitations, and given that the tool's fundamental errors may pose a special challenge for non-experts, ChatGPT should be used with a strategic methodology. By drawing from comprehensive experimental studies, we offer methods and flow charts for effectively using ChatGPT. Our recommendations emphasize iterative interaction with ChatGPT and independent verification of its outputs. Considering the importance of utilizing ChatGPT judiciously and with expertise, we recommend its usage for experts who are well-versed in the respective domains.


Plan, Eliminate, and Track -- Language Models are Good Teachers for Embodied Agents

arXiv.org Artificial Intelligence

Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.


Criticality-Based Varying Step-Number Algorithm for Reinforcement Learning

arXiv.org Artificial Intelligence

In the context of reinforcement learning we introduce the concept of criticality of a state, which indicates the extent to which the choice of action in that particular state influences the expected return. That is, a state in which the choice of action is more likely to influence the final outcome is considered as more critical than a state in which it is less likely to influence the final outcome. We formulate a criticality-based varying step number algorithm (CVS) - a flexible step number algorithm that utilizes the criticality function provided by a human, or learned directly from the environment. We test it in three different domains including the Atari Pong environment, Road-Tree environment, and Shooter environment. We demonstrate that CVS is able to outperform popular learning algorithms such as Deep Q-Learning and Monte Carlo.