Azadi, Samaneh
Movie Weaver: Tuning-Free Multi-Concept Video Personalization with Anchored Prompts
Liang, Feng, Ma, Haoyu, He, Zecheng, Hou, Tingbo, Hou, Ji, Li, Kunpeng, Dai, Xiaoliang, Juefei-Xu, Felix, Azadi, Samaneh, Sinha, Animesh, Zhang, Peizhao, Vajda, Peter, Marculescu, Diana
Video personalization, which generates customized videos using reference images, has gained significant attention. However, prior methods typically focus on single-concept personalization, limiting broader applications that require multi-concept integration. Attempts to extend these models to multiple concepts often lead to identity blending, which results in composite characters with fused attributes from multiple sources. This challenge arises due to the lack of a mechanism to link each concept with its specific reference image. We address this with anchored prompts, which embed image anchors as unique tokens within text prompts, guiding accurate referencing during generation. Additionally, we introduce concept embeddings to encode the order of reference images. Our approach, Movie Weaver, seamlessly weaves multiple concepts-including face, body, and animal images-into one video, allowing flexible combinations in a single model. The evaluation shows that Movie Weaver outperforms existing methods for multi-concept video personalization in identity preservation and overall quality.
Generating Multi-Image Synthetic Data for Text-to-Image Customization
Kumari, Nupur, Yin, Xi, Zhu, Jun-Yan, Misra, Ishan, Azadi, Samaneh
Customization of text-to-image models enables users to insert custom concepts and generate the concepts in unseen settings. Existing methods either rely on costly test-time optimization or train encoders on single-image training datasets without multi-image supervision, leading to worse image quality. We propose a simple approach that addresses both limitations. We first leverage existing text-to-image models and 3D datasets to create a high-quality Synthetic Customization Dataset (SynCD) consisting of multiple images of the same object in different lighting, backgrounds, and poses. We then propose a new encoder architecture based on shared attention mechanisms that better incorporate fine-grained visual details from input images. Finally, we propose a new inference technique that mitigates overexposure issues during inference by normalizing the text and image guidance vectors. Through extensive experiments, we show that our model, trained on the synthetic dataset with the proposed encoder and inference algorithm, outperforms existing tuning-free methods on standard customization benchmarks.
MotiF: Making Text Count in Image Animation with Motion Focal Loss
Wang, Shijie, Azadi, Samaneh, Girdhar, Rohit, Rambhatla, Saketh, Sun, Chen, Yin, Xi
Text-Image-to-Video (TI2V) generation aims to generate a video from an image following a text description, which is also referred to as text-guided image animation. Most existing methods struggle to generate videos that align well with the text prompts, particularly when motion is specified. To overcome this limitation, we introduce MotiF, a simple yet effective approach that directs the model's learning to the regions with more motion, thereby improving the text alignment and motion generation. We use optical flow to generate a motion heatmap and weight the loss according to the intensity of the motion. This modified objective leads to noticeable improvements and complements existing methods that utilize motion priors as model inputs. Additionally, due to the lack of a diverse benchmark for evaluating TI2V generation, we propose TI2V Bench, a dataset consists of 320 image-text pairs for robust evaluation. We present a human evaluation protocol that asks the annotators to select an overall preference between two videos followed by their justifications. Through a comprehensive evaluation on TI2V Bench, MotiF outperforms nine open-sourced models, achieving an average preference of 72%. The TI2V Bench is released in https://wang-sj16.github.io/motif/.
Movie Gen: A Cast of Media Foundation Models
Polyak, Adam, Zohar, Amit, Brown, Andrew, Tjandra, Andros, Sinha, Animesh, Lee, Ann, Vyas, Apoorv, Shi, Bowen, Ma, Chih-Yao, Chuang, Ching-Yao, Yan, David, Choudhary, Dhruv, Wang, Dingkang, Sethi, Geet, Pang, Guan, Ma, Haoyu, Misra, Ishan, Hou, Ji, Wang, Jialiang, Jagadeesh, Kiran, Li, Kunpeng, Zhang, Luxin, Singh, Mannat, Williamson, Mary, Le, Matt, Yu, Matthew, Singh, Mitesh Kumar, Zhang, Peizhao, Vajda, Peter, Duval, Quentin, Girdhar, Rohit, Sumbaly, Roshan, Rambhatla, Sai Saketh, Tsai, Sam, Azadi, Samaneh, Datta, Samyak, Chen, Sanyuan, Bell, Sean, Ramaswamy, Sharadh, Sheynin, Shelly, Bhattacharya, Siddharth, Motwani, Simran, Xu, Tao, Li, Tianhe, Hou, Tingbo, Hsu, Wei-Ning, Yin, Xi, Dai, Xiaoliang, Taigman, Yaniv, Luo, Yaqiao, Liu, Yen-Cheng, Wu, Yi-Chiao, Zhao, Yue, Kirstain, Yuval, He, Zecheng, He, Zijian, Pumarola, Albert, Thabet, Ali, Sanakoyeu, Artsiom, Mallya, Arun, Guo, Baishan, Araya, Boris, Kerr, Breena, Wood, Carleigh, Liu, Ce, Peng, Cen, Vengertsev, Dimitry, Schonfeld, Edgar, Blanchard, Elliot, Juefei-Xu, Felix, Nord, Fraylie, Liang, Jeff, Hoffman, John, Kohler, Jonas, Fire, Kaolin, Sivakumar, Karthik, Chen, Lawrence, Yu, Licheng, Gao, Luya, Georgopoulos, Markos, Moritz, Rashel, Sampson, Sara K., Li, Shikai, Parmeggiani, Simone, Fine, Steve, Fowler, Tara, Petrovic, Vladan, Du, Yuming
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Motion-Conditioned Image Animation for Video Editing
Yan, Wilson, Brown, Andrew, Abbeel, Pieter, Girdhar, Rohit, Azadi, Samaneh
Recent advancements in image and video generation models have seen tremendous progress, with existing models able to synthesize highly complex images [26, 27, 28, 30, 6] or videos [37, 31, 2, 15, 12] given textual descriptions. Outside of generating purely novel content, these models have shown to be powerful tools in achieving advanced image and video editing capabilities for downstream content creation. Given a source video, a caption of the source video, and an editing textual prompt, a video editing method should produce a new video that is aligned with the provided editing prompt while retaining faithfulness to all other non-edited characteristics of the original source video. Video edit types can be broadly split into two main categories of spatial and temporal edits. Spatial edits generally consist of image-based edits extended to video, such as editing a video in the style of Van Gogh, inserting an object into the scene, or changing the background. Due to the added temporal dimension in video, we can also change the underlying motion of the object, such as making a panda play in a pile of ribbons, or replacing apricots in a video with apples and making them fall off a tree (see Figure 1).
Emu Video: Factorizing Text-to-Video Generation by Explicit Image Conditioning
Girdhar, Rohit, Singh, Mannat, Brown, Andrew, Duval, Quentin, Azadi, Samaneh, Rambhatla, Sai Saketh, Shah, Akbar, Yin, Xi, Parikh, Devi, Misra, Ishan
We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions--adjusted noise schedules for diffusion, and multi-stage training--that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work--81% vs. Google's Imagen Video, 90% vs. Nvidia's PYOCO, and 96% vs. Meta's Make-A-Video. Our model outperforms commercial solutions such as RunwayML's Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user's text prompt, where our generations are preferred 96% over prior work.
Make-An-Animation: Large-Scale Text-conditional 3D Human Motion Generation
Azadi, Samaneh, Shah, Akbar, Hayes, Thomas, Parikh, Devi, Gupta, Sonal
Text-guided human motion generation has drawn significant interest because of its impactful applications spanning animation and robotics. Recently, application of diffusion models for motion generation has enabled improvements in the quality of generated motions. However, existing approaches are limited by their reliance on relatively small-scale motion capture data, leading to poor performance on more diverse, in-the-wild prompts. In this paper, we introduce Make-An-Animation, a text-conditioned human motion generation model which learns more diverse poses and prompts from large-scale image-text datasets, enabling significant improvement in performance over prior works. Make-An-Animation is trained in two stages. First, we train on a curated large-scale dataset of (text, static pseudo-pose) pairs extracted from image-text datasets. Second, we fine-tune on motion capture data, adding additional layers to model the temporal dimension. Unlike prior diffusion models for motion generation, Make-An-Animation uses a U-Net architecture similar to recent text-to-video generation models. Human evaluation of motion realism and alignment with input text shows that our model reaches state-of-the-art performance on text-to-motion generation.
Text-Conditional Contextualized Avatars For Zero-Shot Personalization
Azadi, Samaneh, Hayes, Thomas, Shah, Akbar, Pang, Guan, Parikh, Devi, Gupta, Sonal
Recent large-scale text-to-image generation models have made significant improvements in the quality, realism, and diversity of the synthesized images and enable users to control the created content through language. However, the personalization aspect of these generative models is still challenging and under-explored. In this work, we propose a pipeline that enables personalization of image generation with avatars capturing a user's identity in a delightful way. Our pipeline is zero-shot, avatar texture and style agnostic, and does not require training on the avatar at all - it is scalable to millions of users who can generate a scene with their avatar. To render the avatar in a pose faithful to the given text prompt, we propose a novel text-to-3D pose diffusion model trained on a curated large-scale dataset of in-the-wild human poses improving the performance of the SOTA text-to-motion models significantly. We show, for the first time, how to leverage large-scale image datasets to learn human 3D pose parameters and overcome the limitations of motion capture datasets.
Shape-Guided Diffusion with Inside-Outside Attention
Park, Dong Huk, Luo, Grace, Toste, Clayton, Azadi, Samaneh, Liu, Xihui, Karalashvili, Maka, Rohrbach, Anna, Darrell, Trevor
When manipulating an object, existing text-to-image diffusion models often ignore the shape of the object and generate content that is incorrectly scaled, cut off, or replaced with background content. We propose a training-free method, Shape-Guided Diffusion, that modifies pretrained diffusion models to be sensitive to shape input specified by a user or automatically inferred from text. We use a novel Inside-Outside Attention mechanism during the inversion and generation process to apply this shape constraint to the cross- and self-attention maps. Our mechanism designates which spatial region is the object (inside) vs. background (outside) then associates edits specified by text prompts to the correct region. We demonstrate the efficacy of our method on the shape-guided editing task, where the model must replace an object according to a text prompt and object mask. We curate a new ShapePrompts benchmark derived from MS-COCO and achieve SOTA results in shape faithfulness without a degradation in text alignment or image realism according to both automatic metrics and annotator ratings. Our data and code will be made available at https://shape-guided-diffusion.github.io.
Discriminator Rejection Sampling
Azadi, Samaneh, Olsson, Catherine, Darrell, Trevor, Goodfellow, Ian, Odena, Augustus
We propose a rejection sampling scheme using the discriminator of a GAN to approximately correct errors in the GAN generator distribution. We show that under quite strict assumptions, this will allow us to recover the data distribution exactly. We then examine where those strict assumptions break down and design a practical algorithm - called Discriminator Rejection Sampling (DRS) - that can be used on real data-sets. Finally, we demonstrate the efficacy of DRS on a mixture of Gaussians and on the SAGAN model, state-of-the-art in the image generation task at the time of developing this work. On ImageNet, we train an improved baseline that increases the Inception Score from 52.52 to 62.36 and reduces the Frechet Inception Distance from 18.65 to 14.79. We then use DRS to further improve on this baseline, improving the Inception Score to 76.08 and the FID to 13.75.