Azab, Mahmoud
CompCap: Improving Multimodal Large Language Models with Composite Captions
Chen, Xiaohui, Shukla, Satya Narayan, Azab, Mahmoud, Singh, Aashu, Wang, Qifan, Yang, David, Peng, ShengYun, Yu, Hanchao, Yan, Shen, Zhang, Xuewen, He, Baosheng
How well can Multimodal Large Language Models (MLLMs) understand composite images? Composite images (CIs) are synthetic visuals created by merging multiple visual elements, such as charts, posters, or screenshots, rather than being captured directly by a camera. While CIs are prevalent in real-world applications, recent MLLM developments have primarily focused on interpreting natural images (NIs). Our research reveals that current MLLMs face significant challenges in accurately understanding CIs, often struggling to extract information or perform complex reasoning based on these images. We find that existing training data for CIs are mostly formatted for question-answer tasks (e.g., in datasets like ChartQA and ScienceQA), while high-quality image-caption datasets, critical for robust vision-language alignment, are only available for NIs. To bridge this gap, we introduce Composite Captions (CompCap), a flexible framework that leverages Large Language Models (LLMs) and automation tools to synthesize CIs with accurate and detailed captions. Using CompCap, we curate CompCap-118K, a dataset containing 118K image-caption pairs across six CI types. We validate the effectiveness of CompCap-118K by supervised fine-tuning MLLMs of three sizes: xGen-MM-inst.-4B and LLaVA-NeXT-Vicuna-7B/13B. Empirical results show that CompCap-118K significantly enhances MLLMs' understanding of CIs, yielding average gains of 1.7%, 2.0%, and 2.9% across eleven benchmarks, respectively.
Fighting FIRe with FIRE: Assessing the Validity of Text-to-Video Retrieval Benchmarks
Rodriguez, Pedro, Azab, Mahmoud, Silvert, Becka, Sanchez, Renato, Labson, Linzy, Shah, Hardik, Moon, Seungwhan
Searching troves of videos with textual descriptions is a core multimodal retrieval task. Owing to the lack of a purpose-built dataset for text-to-video retrieval, video captioning datasets have been re-purposed to evaluate models by (1) treating captions as positive matches to their respective videos and (2) assuming all other videos to be negatives. However, this methodology leads to a fundamental flaw during evaluation: since captions are marked as relevant only to their original video, many alternate videos also match the caption, which introduces false-negative caption-video pairs. We show that when these false negatives are corrected, a recent state-of-the-art model gains 25\% recall points -- a difference that threatens the validity of the benchmark itself. To diagnose and mitigate this issue, we annotate and release 683K additional caption-video pairs. Using these, we recompute effectiveness scores for three models on two standard benchmarks (MSR-VTT and MSVD). We find that (1) the recomputed metrics are up to 25\% recall points higher for the best models, (2) these benchmarks are nearing saturation for Recall@10, (3) caption length (generality) is related to the number of positives, and (4) annotation costs can be mitigated through sampling. We recommend retiring these benchmarks in their current form, and we make recommendations for future text-to-video retrieval benchmarks.
Normalized Contrastive Learning for Text-Video Retrieval
Park, Yookoon, Azab, Mahmoud, Xiong, Bo, Moon, Seungwhan, Metze, Florian, Kundu, Gourab, Ahmed, Kirmani
Cross-modal contrastive learning has led the recent advances in multimodal retrieval with its simplicity and effectiveness. In this work, however, we reveal that cross-modal contrastive learning suffers from incorrect normalization of the sum retrieval probabilities of each text or video instance. Specifically, we show that many test instances are either over- or under-represented during retrieval, significantly hurting the retrieval performance. To address this problem, we propose Normalized Contrastive Learning (NCL) which utilizes the Sinkhorn-Knopp algorithm to compute the instance-wise biases that properly normalize the sum retrieval probabilities of each instance so that every text and video instance is fairly represented during cross-modal retrieval. Empirical study shows that NCL brings consistent and significant gains in text-video retrieval on different model architectures, with new state-of-the-art multimodal retrieval metrics on the ActivityNet, MSVD, and MSR-VTT datasets without any architecture engineering.