Ayoub, Jackie
Human-AI Collaboration: Trade-offs Between Performance and Preferences
Mayer, Lukas William, Karny, Sheer, Ayoub, Jackie, Song, Miao, Tian, Danyang, Moradi-Pari, Ehsan, Steyvers, Mark
Despite the growing interest in collaborative AI, designing systems that seamlessly integrate human input remains a major challenge. In this study, we developed a task to systematically examine human preferences for collaborative agents. We created and evaluated five collaborative AI agents with strategies that differ in the manner and degree they adapt to human actions. Participants interacted with a subset of these agents, evaluated their perceived traits, and selected their preferred agent. We used a Bayesian model to understand how agents' strategies influence the Human-AI team performance, AI's perceived traits, and the factors shaping human-preferences in pairwise agent comparisons. Our results show that agents who are more considerate of human actions are preferred over purely performance-maximizing agents. Moreover, we show that such human-centric design can improve the likability of AI collaborators without reducing performance. We find evidence for inequality-aversion effects being a driver of human choices, suggesting that people prefer collaborative agents which allow them to meaningfully contribute to the team. Taken together, these findings demonstrate how collaboration with AI can benefit from development efforts which include both subjective and objective metrics.
Building Trust Profiles in Conditionally Automated Driving
Avetisyan, Lilit, Ayoub, Jackie, Yang, X. Jessie, Zhou, Feng
Trust is crucial for ensuring the safety, security, and widespread adoption of automated vehicles (AVs), and if trust is lacking, drivers and the public may not be willing to use them. This research seeks to investigate trust profiles in order to create personalized experiences for drivers in AVs. This technique helps in better understanding drivers' dynamic trust from a persona's perspective. The study was conducted in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition with eight takeover requests (TORs) in different scenarios. Drivers' dispositional trust, initial learned trust, dynamic trust, personality, and emotions were measured. We identified three trust profiles (i.e., believers, oscillators, and disbelievers) using a K-means clustering model. In order to validate this model, we built a multinomial logistic regression model based on SHAP explainer that selected the most important features to predict the trust profiles with an F1-score of 0.90 and accuracy of 0.89. We also discussed how different individual factors influenced trust profiles which helped us understand trust dynamics better from a persona's perspective. Our findings have important implications for designing a personalized in-vehicle trust monitoring and calibrating system to adjust drivers' trust levels in order to improve safety and experience in automated driving.
Cause-and-Effect Analysis of ADAS: A Comparison Study between Literature Review and Complaint Data
Ayoub, Jackie, Wang, Zifei, Li, Meitang, Guo, Huizhong, Sherony, Rini, Bao, Shan, Zhou, Feng
Advanced driver assistance systems (ADAS) are designed to improve vehicle safety. However, it is difficult to achieve such benefits without understanding the causes and limitations of the current ADAS and their possible solutions. This study 1) investigated the limitations and solutions of ADAS through a literature review, 2) identified the causes and effects of ADAS through consumer complaints using natural language processing models, and 3) compared the major differences between the two. These two lines of research identified similar categories of ADAS causes, including human factors, environmental factors, and vehicle factors. However, academic research focused more on human factors of ADAS issues and proposed advanced algorithms to mitigate such issues while drivers complained more of vehicle factors of ADAS failures, which led to associated top consequences. The findings from these two sources tend to complement each other and provide important implications for the improvement of ADAS in the future.