Goto

Collaborating Authors

 Awekar, Amit


Compressed models are NOT miniature versions of large models

arXiv.org Artificial Intelligence

Large neural models are often compressed before deployment. Model compression is necessary for many practical reasons, such as inference latency, memory footprint, and energy consumption. Compressed models are assumed to be miniature versions of corresponding large neural models. However, we question this belief in our work. We compare compressed models with corresponding large neural models using four model characteristics: prediction errors, data representation, data distribution, and vulnerability to adversarial attack. We perform experiments using the BERT-large model and its five compressed versions. For all four model characteristics, compressed models significantly differ from the BERT-large model. Even among compressed models, they differ from each other on all four model characteristics. Apart from the expected loss in model performance, there are major side effects of using compressed models to replace large neural models.


Are Word Embedding Methods Stable and Should We Care About It?

arXiv.org Artificial Intelligence

A representation learning method is considered stable if it consistently generates similar representation of the given data across multiple runs. Word Embedding Methods (WEMs) are a class of representation learning methods that generate dense vector representation for each word in the given text data. The central idea of this paper is to explore the stability measurement of WEMs using intrinsic evaluation based on word similarity. We experiment with three popular WEMs: Word2Vec, GloVe, and fastText. For stability measurement, we investigate the effect of five parameters involved in training these models. We perform experiments using four real-world datasets from different domains: Wikipedia, News, Song lyrics, and European parliament proceedings. We also observe the effect of WEM stability on three downstream tasks: Clustering, POS tagging, and Fairness evaluation. Our experiments indicate that amongst the three WEMs, fastText is the most stable, followed by GloVe and Word2Vec.


Effect of dimensionality change on the bias of word embeddings

arXiv.org Artificial Intelligence

Word embedding methods (WEMs) are extensively used for representing text data. The dimensionality of these embeddings varies across various tasks and implementations. The effect of dimensionality change on the accuracy of the downstream task is a well-explored question. However, how the dimensionality change affects the bias of word embeddings needs to be investigated. Using the English Wikipedia corpus, we study this effect for two static (Word2Vec and fastText) and two context-sensitive (ElMo and BERT) WEMs. We have two observations. First, there is a significant variation in the bias of word embeddings with the dimensionality change. Second, there is no uniformity in how the dimensionality change affects the bias of word embeddings. These factors should be considered while selecting the dimensionality of word embeddings.


Noise in Relation Classification Dataset TACRED: Characterization and Reduction

arXiv.org Artificial Intelligence

The overarching objective of this paper is two-fold. First, to explore model-based approaches to characterize the primary cause of the noise. in the RE dataset TACRED Second, to identify the potentially noisy instances. Towards the first objective, we analyze predictions and performance of state-of-the-art (SOTA) models to identify the root cause of noise in the dataset. Our analysis of TACRED shows that the majority of the noise in the dataset originates from the instances labeled as no-relation which are negative examples. For the second objective, we explore two nearest-neighbor-based strategies to automatically identify potentially noisy examples for elimination and reannotation. Our first strategy, referred to as Intrinsic Strategy (IS), is based on the assumption that positive examples are clean. Thus, we have used false-negative predictions to identify noisy negative examples. Whereas, our second approach, referred to as Extrinsic Strategy, is based on using a clean subset of the dataset to identify potentially noisy negative examples. Finally, we retrained the SOTA models on the eliminated and reannotated dataset. Our empirical results based on two SOTA models trained on TACRED-E following the IS show an average 4% F1-score improvement, whereas reannotation (TACRED-R) does not improve the original results. However, following ES, SOTA models show the average F1-score improvement of 3.8% and 4.4% when trained on respective eliminated (TACRED-EN) and reannotated (TACRED-RN) datasets respectively. We further extended the ES for cleaning positive examples as well, which resulted in an average performance improvement of 5.8% and 5.6% for the eliminated (TACRED-ENP) and reannotated (TACRED-RNP) datasets respectively.


Budget Sensitive Reannotation of Noisy Relation Classification Data Using Label Hierarchy

arXiv.org Artificial Intelligence

Large crowd-sourced datasets are often noisy and relation classification (RC) datasets are no exception. Reannotating the entire dataset is one probable solution however it is not always viable due to time and budget constraints. This paper addresses the problem of efficient reannotation of a large noisy dataset for the RC. Our goal is to catch more annotation errors in the dataset while reannotating fewer instances. Existing work on RC dataset reannotation lacks the flexibility about how much data to reannotate. We introduce the concept of a reannotation budget to overcome this limitation. The immediate follow-up problem is: Given a specific reannotation budget, which subset of the data should we reannotate? To address this problem, we present two strategies to selectively reannotate RC datasets. Our strategies utilize the taxonomic hierarchy of relation labels. The intuition of our work is to rely on the graph distance between actual and predicted relation labels in the label hierarchy graph. We evaluate our reannotation strategies on the well-known TACRED dataset. We design our experiments to answer three specific research questions. First, does our strategy select novel candidates for reannotation? Second, for a given reannotation budget is our reannotation strategy more efficient at catching annotation errors? Third, what is the impact of data reannotation on RC model performance measurement? Experimental results show that our both reannotation strategies are novel and efficient. Our analysis indicates that the current reported performance of RC models on noisy TACRED data is inflated.


Collective Learning From Diverse Datasets for Entity Typing in the Wild

arXiv.org Artificial Intelligence

Entity typing (ET) is the problem of assigning labels to given entity mentions in a sentence. Existing works for ET require knowledge about the domain and target label set for a given test instance. ET in the absence of such knowledge is a novel problem that we address as ET in the wild. We hypothesize that the solution to this problem is to build supervised models that generalize better on the ET task as a whole, rather than a specific dataset. In this direction, we propose a Collective Learning Framework (CLF), which enables learning from diverse datasets in a unified way. The CLF first creates a unified hierarchical label set (UHLS) and a label mapping by aggregating label information from all available datasets. Then it builds a single neural network classifier using UHLS, label mapping, and a partial loss function. The single classifier predicts the finest possible label across all available domains even though these labels may not be present in any domain-specific dataset. We also propose a set of evaluation schemes and metrics to evaluate the performance of models in this novel problem. Extensive experimentation on seven diverse real-world datasets demonstrates the efficacy of our CLF.