Goto

Collaborating Authors

 Awasthi, Raghav


Krutrim LLM: Multilingual Foundational Model for over a Billion People

arXiv.org Artificial Intelligence

India is a diverse society with unique challenges in developing AI systems, including linguistic diversity, oral traditions, data accessibility, and scalability. Existing foundation models are primarily trained on English, limiting their effectiveness for India's population. Indic languages comprise only 1 percent of Common Crawl corpora despite India representing 18 percent of the global population, leading to linguistic biases. Thousands of regional languages, dialects, and code mixing create additional representation challenges due to sparse training data. We introduce Krutrim LLM, a 2 trillion token multilingual model designed for India's linguistic landscape. It incorporates the largest known Indic dataset, mitigating data scarcity and ensuring balanced performance across dialects. Krutrim outperforms or matches state-of-the-art models on Indic benchmarks while maintaining competitive English performance. Despite being significantly smaller in training flops, Krutrim LLM matches or exceeds models like LLAMA-2 on 10 out of 16 tasks, with an average score of 0.57 versus 0.55. This evidences Krutrim's flexible multilingual fluency across diverse linguistic contexts. Krutrim is integrated with real-time search to improve factual accuracy in conversational AI applications. This enhances accessibility for over 1 billion users worldwide. Through intentional design choices addressing data imbalances, Krutrim LLM signifies meaningful progress in building ethical, globally representative AI models.


VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution using Reinforcement Learning

arXiv.org Artificial Intelligence

A COVID-19 vaccine is our best bet for mitigating the ongoing onslaught of the pandemic. However, vaccine is also expected to be a limited resource. An optimal allocation strategy, especially in countries with access inequities and a temporal separation of hot-spots might be an effective way of halting the disease spread. We approach this problem by proposing a novel pipeline VacSIM that dovetails Actor-Critic using Kronecker-Factored Trust Region (ACKTR) model into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine. Whereas the ACKTR model suggests better actions and rewards, Contextual Bandits allow online modifications that may need to be implemented on a day-to-day basis in the real world scenario. We evaluate this framework against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in five different States across India and demonstrate up to 100,000 additional lives potentially saved and a five-fold increase in the efficacy of limiting the spread over a period of 30 days through the VacSIM approach. We also propose novel evaluation strategies including a standard compartmental model based projections and a causality preserving evaluation of our model. Finally, we contribute a new Open-AI environment meant for the vaccine distribution scenario, and open-source VacSIM for wide testing and applications across the globe.