Goto

Collaborating Authors

 Awad, Alaa


Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models

arXiv.org Artificial Intelligence

Thousands of individuals succumb annually to leukemia alone. As artificial intelligence-driven technologies continue to evolve and advance, the question of their applicability and reliability remains unresolved. This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL) using data that best represents real-world scenarios. ALL is one of several types of blood cancer, and it is an aggressive form of leukemia. In this investigation, we examine the most recent advancements in ALL detection, as well as the latest iteration of the YOLO series and its performance. We address the question of whether white blood cells are malignant or benign. Additionally, the proposed models can identify different ALL stages, including early stages. Furthermore, these models can detect hematogones despite their frequent misclassification as ALL. By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%, demonstrating the effectiveness of these algorithms across multiple datasets and various real-world situations.


Early Diagnosis of Acute Lymphoblastic Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models

arXiv.org Artificial Intelligence

Leukemia, a severe form of blood cancer, claims thousands of lives each year. This study focuses on the detection of Acute Lymphoblastic Leukemia (ALL) using advanced image processing and deep learning techniques. By leveraging recent advancements in artificial intelligence, the research evaluates the reliability of these methods in practical, real-world scenarios. Specifically, it examines the performance of state-of-the-art YOLO models, including YOLOv8 and YOLOv11, to distinguish between malignant and benign white blood cells and accurately identify different stages of ALL, including early stages. Moreover, the models demonstrate the ability to detect hematogones, which are frequently misclassified as ALL. With accuracy rates reaching 98.8%, this study highlights the potential of these algorithms to provide robust and precise leukemia detection across diverse datasets and conditions.


Efficient Large-Scale Visual Representation Learning And Evaluation

arXiv.org Artificial Intelligence

Efficiently learning visual representations of items is vital for large-scale recommendations. In this article we compare several pretrained efficient backbone architectures, both in the convolutional neural network (CNN) and in the vision transformer (ViT) family. We describe challenges in e-commerce vision applications at scale and highlight methods to efficiently train, evaluate, and serve visual representations. We present ablation studies evaluating visual representations in several downstream tasks. To this end, we present a novel multilingual text-to-image generative offline evaluation method for visually similar recommendation systems. Finally, we include online results from deployed machine learning systems in production on a large scale e-commerce platform.


adSformers: Personalization from Short-Term Sequences and Diversity of Representations in Etsy Ads

arXiv.org Artificial Intelligence

In this article, we present a general approach to personalizing ads through encoding and learning from variable-length sequences of recent user actions and diverse representations. To this end we introduce a three-component module called the adSformer diversifiable personalization module (ADPM) that learns a dynamic user representation. We illustrate the module's effectiveness and flexibility by personalizing the Click-Through Rate (CTR) and Post-Click Conversion Rate (PCCVR) models used in sponsored search. The first component of the ADPM, the adSformer encoder, includes a novel adSformer block which learns the most salient sequence signals. ADPM's second component enriches the learned signal through visual, multimodal, and other pretrained representations. Lastly, the third ADPM "learned on the fly" component further diversifies the signal encoded in the dynamic user representation. The ADPM-personalized CTR and PCCVR models, henceforth referred to as adSformer CTR and adSformer PCCVR, outperform the CTR and PCCVR production baselines by $+2.66\%$ and $+2.42\%$, respectively, in offline Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Following the robust online gains in A/B tests, Etsy Ads deployed the ADPM-personalized sponsored search system to $100\%$ of traffic as of February 2023.