Goto

Collaborating Authors

 Avci, Onur


High-Quality and Full Bandwidth Seismic Signal Synthesis using Operational GANs

arXiv.org Artificial Intelligence

Vibration sensors are essential in acquiring seismic activity for an accurate earthquake assessment. The state-of-the-art sensors can provide the best signal quality and the highest bandwidth; however, their high cost usually hinders a wide range of applicability and coverage, which is otherwise possible with their basic and cheap counterparts. But, their poor quality and low bandwidth can significantly degrade the signal fidelity and result in an imprecise analysis. To address these drawbacks, in this study, we propose a novel, high-quality, and full bandwidth seismic signal synthesis by transforming the signal acquired from an inferior sensor. We employ 1D Operational Generative Adversarial Networks (Op-GANs) with novel loss functions to achieve this. Therefore, the study's key contributions include releasing a new dataset, addressing operational constraints in seismic monitoring, and pioneering a deep-learning transformation technique to create the first virtual seismic sensor. The proposed method is extensively evaluated over the Simulated Ground Motion (SimGM) benchmark dataset, and the results demonstrated that the proposed approach significantly improves the quality and bandwidth of seismic signals acquired from a variety of sensors, including a cheap seismic sensor, the CSN-Phidgets, and the integrated accelerometers of an Android, and iOS phone, to the same level as the state-of-the-art sensor (e.g., Kinemetrics-Episensor). The SimGM dataset, our results, and the optimized PyTorch implementation of the proposed approach are publicly shared.


Exploring Sound vs Vibration for Robust Fault Detection on Rotating Machinery

arXiv.org Artificial Intelligence

Robust and real-time detection of faults on rotating machinery has become an ultimate objective for predictive maintenance in various industries. Vibration-based Deep Learning (DL) methodologies have become the de facto standard for bearing fault detection as they can produce state-of-the-art detection performances under certain conditions. Despite such particular focus on the vibration signal, the utilization of sound, on the other hand, has been neglected whilst only a few studies have been proposed during the last two decades, all of which were based on a conventional ML approach. One major reason is the lack of a benchmark dataset providing a large volume of both vibration and sound data over several working conditions for different machines and sensor locations. In this study, we address this need by presenting the new benchmark Qatar University Dual-Machine Bearing Fault Benchmark dataset (QU-DMBF), which encapsulates sound and vibration data from two different motors operating under 1080 working conditions overall. Then we draw the focus on the major limitations and drawbacks of vibration-based fault detection due to numerous installation and operational conditions. Finally, we propose the first DL approach for sound-based fault detection and perform comparative evaluations between the sound and vibration over the QU-DMBF dataset. A wide range of experimental results shows that the sound-based fault detection method is significantly more robust than its vibration-based counterpart, as it is entirely independent of the sensor location, cost-effective (requiring no sensor and sensor maintenance), and can achieve the same level of the best detection performance by its vibration-based counterpart. With this study, the QU-DMBF dataset, the optimized source codes in PyTorch, and comparative evaluations are now publicly shared.


Zero-Shot Motor Health Monitoring by Blind Domain Transition

arXiv.org Artificial Intelligence

Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the recent deep learning (DL) methodologies trained on the labeled data from the same machine, the classification accuracy significantly deteriorates when one or few conditions are altered. Furthermore, their performance suffers significantly or may entirely fail when they are tested on another machine with entirely different healthy and faulty signal patterns. To address this need, in this pilot study, we propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics. To accomplish this objective, a 1D Operational Generative Adversarial Network (Op-GAN) first characterizes the transition between normal and fault vibration signals of (a) source machine(s) under various conditions, sensor parameters, and fault types. Then for a target machine, the potential faulty signals can be generated, and over its actual healthy and synthesized faulty signals, a compact, and lightweight 1D Self-ONN fault detector can then be trained to detect the real faulty condition in real time whenever it occurs. To validate the proposed approach, a new benchmark dataset is created using two different motors working under different conditions and sensor locations. Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.


Zero-Shot Transfer Learning for Structural Health Monitoring using Generative Adversarial Networks and Spectral Mapping

arXiv.org Artificial Intelligence

Gathering properly labelled, adequately rich, and case-specific data for successfully training a data-driven or hybrid model for structural health monitoring (SHM) applications is a challenging task. We posit that a Transfer Learning (TL) method that utilizes available data in any relevant source domain and directly applies to the target domain through domain adaptation can provide substantial remedies to address this issue. Accordingly, we present a novel TL method that differentiates between the source's no-damage and damage cases and utilizes a domain adaptation (DA) technique. The DA module transfers the accumulated knowledge in contrasting no-damage and damage cases in the source domain to the target domain, given only the target's no-damage case. High-dimensional features allow employing signal processing domain knowledge to devise a generalizable DA approach. The Generative Adversarial Network (GAN) architecture is adopted for learning since its optimization process accommodates high-dimensional inputs in a zero-shot setting. At the same time, its training objective conforms seamlessly with the case of no-damage and damage data in SHM since its discriminator network differentiates between real (no damage) and fake (possibly unseen damage) data. An extensive set of experimental results demonstrates the method's success in transferring knowledge on differences between no-damage and damage cases across three strongly heterogeneous independent target structures. The area under the Receiver Operating Characteristics curves (Area Under the Curve - AUC) is used to evaluate the differentiation between no-damage and damage cases in the target domain, reaching values as high as 0.95. With no-damage and damage cases discerned from each other, zero-shot structural damage detection is carried out. The mean F1 scores for all damages in the three independent datasets are 0.978, 0.992, and 0.975.


CycleGAN for Undamaged-to-Damaged Domain Translation for Structural Health Monitoring and Damage Detection

arXiv.org Artificial Intelligence

The accelerated advancements in the data science field in the last few decades has benefitted many other fields including Structural Health Monitoring (SHM). Particularly, the employment of Artificial Intelligence (AI) such as Machine Learning (ML) and Deep Learning (DL) methods towards vibration-based damage diagnostics of civil structures have seen a great interest due to their nature of supreme performance in learning from data. Along with diagnostics, damage prognostics also hold a vital prominence, such as estimating the remaining useful life of civil structures. Currently used AI-based data-driven methods for damage diagnostics and prognostics are centered on historical data of the structures and require a substantial amount of data to directly form the prediction models. Although some of these methods are generative-based models, after learning the distribution of the data, they are used to perform ML or DL tasks such as classification, regression, clustering, etc. In this study, a variant of Generative Adversarial Networks (GAN), Cycle-Consistent Wasserstein Deep Convolutional GAN with Gradient Penalty (CycleWDCGAN-GP) model is used to answer some of the most important questions in SHM: "How does the dynamic signature of a structure transition from undamaged to damaged conditions?" and "What is the nature of such transition?". The outcomes of this study demonstrate that the proposed model can accurately generate the possible future responses of a structure for potential future damaged conditions. In other words, with the proposed methodology, the stakeholders will be able to understand the damaged condition of structures while the structures are still in healthy (undamaged) conditions. This tool will enable them to be more proactive in overseeing the life cycle performance of structures as well as assist in remaining useful life predictions.


Generative Adversarial Networks for Labeled Data Creation for Structural Monitoring and Damage Detection

arXiv.org Machine Learning

There has been a drastic progression in the field of Data Science in the last few decades and other disciplines have been continuously benefitting from it. Structural Health Monitoring (SHM) is one of those fields that use Artificial Intelligence (AI) such as Machine Learning (ML) and Deep Learning (DL) algorithms for condition assessment of civil structures based on the collected data. The ML and DL methods require plenty of data for training procedures; however, in SHM, data collection from civil structures is very exhaustive; particularly getting useful data (damage associated data) can be very challenging. This paper uses 1-D Wasserstein Deep Convolutional Generative Adversarial Networks using Gradient Penalty (1-D WDCGAN-GP) for synthetic labeled vibration data generation. Then, implements structural damage detection on different levels of synthetically enhanced vibration datasets by using 1-D Deep Convolutional Neural Network (1-D DCNN). The damage detection results show that the 1-D WDCGAN-GP can be successfully utilized to tackle data scarcity in vibration-based damage diagnostics of civil structures. Keywords: Structural Health Monitoring (SHM), Structural Damage Diagnostics, Structural Damage Detection, 1-D Deep Convolutional Neural Networks (1-D DCNN), 1-D Generative Adversarial Networks (1-D GAN), Deep Convolutional Generative Adversarial Networks (DCGAN), Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)


Early Bearing Fault Diagnosis of Rotating Machinery by 1D Self-Organized Operational Neural Networks

arXiv.org Artificial Intelligence

Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of them addressed bearing fault severity classification for early fault diagnosis with high enough accuracy. 1D Convolutional Neural Networks (CNNs) have indeed achieved good performance for detecting RM bearing faults from raw vibration and current signals but did not classify fault severity. Furthermore, recent studies have demonstrated the limitation in terms of learning capability of conventional CNNs attributed to the basic underlying linear neuron model. Recently, Operational Neural Networks (ONNs) were proposed to enhance the learning capability of CNN by introducing non-linear neuron models and further heterogeneity in the network configuration. In this study, we propose 1D Self-organized ONNs (Self-ONNs) with generative neurons for bearing fault severity classification and providing continuous condition monitoring. Experimental results over the benchmark NSF/IMS bearing vibration dataset using both x- and y-axis vibration signals for inner race and rolling element faults demonstrate that the proposed 1D Self-ONNs achieve significant performance gap against the state-of-the-art (1D CNNs) with similar computational complexity.


1D Convolutional Neural Networks and Applications: A Survey

arXiv.org Artificial Intelligence

During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application-specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and motor-fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publically shared in a dedicated website.