Auli, Michael
Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking
Yan, Brian, Pratap, Vineel, Watanabe, Shinji, Auli, Michael
Multilingual Automatic Speech Recognition (ASR) models are typically evaluated in a setting where the ground-truth language of the speech utterance is known, however, this is often not the case for most practical settings. Automatic Spoken Language Identification (SLID) models are not perfect and misclassifications have a substantial impact on the final ASR accuracy. In this paper, we present a simple and effective N-best re-ranking approach to improve multilingual ASR accuracy for several prominent acoustic models by employing external features such as language models and text-based language identification models. Our results on FLEURS using the MMS and Whisper models show spoken language identification accuracy improvements of 8.7% and 6.1%, respectively and word error rates which are 3.3% and 2.0% lower on these benchmarks.
Toward Joint Language Modeling for Speech Units and Text
Chou, Ju-Chieh, Chien, Chung-Ming, Hsu, Wei-Ning, Livescu, Karen, Babu, Arun, Conneau, Alexis, Baevski, Alexei, Auli, Michael
Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.
Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language
Baevski, Alexei, Babu, Arun, Hsu, Wei-Ning, Auli, Michael
Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs.
Measuring the Impact of Individual Domain Factors in Self-Supervised Pre-Training
Sanabria, Ramon, Hsu, Wei-Ning, Baevski, Alexei, Auli, Michael
Human speech data comprises a rich set of domain factors such as accent, syntactic and semantic variety, or acoustic environment. Previous work explores the effect of domain mismatch in automatic speech recognition between pre-training and fine-tuning as a whole but does not dissect the contribution of individual factors. In this paper, we present a controlled study to better understand the effect of such factors on the performance of pre-trained representations on automatic speech recognition. To do so, we pre-train models either on modified natural speech or synthesized audio, with a single domain factor modified, and then measure performance after fine-tuning. Results show that phonetic domain factors play an important role during pre-training while grammatical and syntactic factors are far less important. To our knowledge, this is the first study to better understand the domain characteristics of pre-trained sets in self-supervised pre-training for speech.
Scaling Speech Technology to 1,000+ Languages
Pratap, Vineel, Tjandra, Andros, Shi, Bowen, Tomasello, Paden, Babu, Arun, Kundu, Sayani, Elkahky, Ali, Ni, Zhaoheng, Vyas, Apoorv, Fazel-Zarandi, Maryam, Baevski, Alexei, Adi, Yossi, Zhang, Xiaohui, Hsu, Wei-Ning, Conneau, Alexis, Auli, Michael
Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.
DinoSR: Self-Distillation and Online Clustering for Self-supervised Speech Representation Learning
Liu, Alexander H., Chang, Heng-Jui, Auli, Michael, Hsu, Wei-Ning, Glass, James R.
In this paper, we introduce self-distillation and online clustering for self-supervised speech representation learning (DinoSR) which combines masked language modeling, self-distillation, and online clustering. We show that these concepts complement each other and result in a strong representation learning model for speech. DinoSR first extracts contextualized embeddings from the input audio with a teacher network, then runs an online clustering system on the embeddings to yield a machine-discovered phone inventory, and finally uses the discretized tokens to guide a student network. We show that DinoSR surpasses previous state-of-the-art performance in several downstream tasks, and provide a detailed analysis of the model and the learned discrete units. The source code will be made available after the anonymity period.
AV-data2vec: Self-supervised Learning of Audio-Visual Speech Representations with Contextualized Target Representations
Lian, Jiachen, Baevski, Alexei, Hsu, Wei-Ning, Auli, Michael
Self-supervision has shown great potential for audio-visual speech recognition by vastly reducing the amount of labeled data required to build good systems. However, existing methods are either not entirely end-to-end or do not train joint representations of both modalities. In this paper, we introduce AV-data2vec which addresses these challenges and builds audio-visual representations based on predicting contextualized representations which has been successful in the uni-modal case. The model uses a shared transformer encoder for both audio and video and can combine both modalities to improve speech recognition. Results on LRS3 show that AV-data2vec consistently outperforms existing methods under most settings.
A Comparison of Discrete Latent Variable Models for Speech Representation Learning
Zhou, Henry, Baevski, Alexei, Auli, Michael
Neural latent variable models enable the discovery of interesting structure in speech audio data. This paper presents a comparison of two different approaches which are broadly based on predicting future time-steps or auto-encoding the input signal. Our study compares the representations learned by vq-vae and vq-wav2vec in terms of sub-word unit discovery and phoneme recognition performance. Results show that future time-step prediction with vq-wav2vec achieves better performance. The best system achieves an error rate of 13.22 on the ZeroSpeech 2019 ABX phoneme discrimination challenge.
Modeling Human Motion with Quaternion-based Neural Networks
Pavllo, Dario, Feichtenhofer, Christoph, Auli, Michael, Grangier, David
Previous work on predicting or generating 3D human pose sequences regresses either joint rotations or joint positions. The former strategy is prone to error accumulation along the kinematic chain, as well as discontinuities when using Euler angles or exponential maps as parameterizations. The latter requires re-projection onto skeleton constraints to avoid bone stretching and invalid configurations. This work addresses both limitations. QuaterNet represents rotations with quaternions and our loss function performs forward kinematics on a skeleton to penalize absolute position errors instead of angle errors. We investigate both recurrent and convolutional architectures and evaluate on short-term prediction and long-term generation. For the latter, our approach is qualitatively judged as realistic as recent neural strategies from the graphics literature. Our experiments compare quaternions to Euler angles as well as exponential maps and show that only a very short context is required to make reliable future predictions. Finally, we show that the standard evaluation protocol for Human3.6M produces high variance results and we propose a simple solution.