Attux, Romis
Comparison of Neural Models for X-ray Image Classification in COVID-19 Detection
Togni, Jimi, Attux, Romis
This study presents a comparative analysis of methods for detecting COVID-19 infection in radiographic images. The images, sourced from publicly available datasets, were categorized into three classes: 'normal,' 'pneumonia,' and 'COVID.' For the experiments, transfer learning was employed using eight pre-trained networks: SqueezeNet, DenseNet, ResNet, AlexNet, VGG, GoogleNet, ShuffleNet, and MobileNet. DenseNet achieved the highest accuracy of 97.64% using the ADAM optimization function in the multiclass approach. In the binary classification approach, the highest precision was 99.98%, obtained by the VGG, ResNet, and MobileNet networks. A comparative evaluation was also conducted using heat maps.
FBCNN: A Deep Neural Network Architecture for Portable and Fast Brain-Computer Interfaces
Bassi, Pedro R. A. S., Attux, Romis
Objective: To propose a novel deep neural network (DNN) architecture -- the filter bank convolutional neural network (FBCNN) -- to improve SSVEP classification in single-channel BCIs with small data lengths. Methods: We propose two models: the FBCNN-2D and the FBCNN-3D. The FBCNN-2D utilizes a filter bank to create sub-band components of the electroencephalography (EEG) signal, which it transforms using the fast Fourier transform (FFT) and analyzes with a 2D CNN. The FBCNN-3D utilizes the same filter bank, but it transforms the sub-band components into spectrograms via short-time Fourier transform (STFT), and analyzes them with a 3D CNN. We made use of transfer learning. To train the FBCNN-3D, we proposed a new technique, called inter-dimensional transfer learning, to transfer knowledge from a 2D DNN to a 3D DNN. Our BCI was conceived so as not to require calibration from the final user: therefore, the test subject data was separated from training and validation. Results: The mean test accuracy was 85.7% for the FBCCA-2D and 85% for the FBCCA-3D. Mean F1-Scores were 0.858 and 0.853. Alternative classification methods, SVM, FBCCA and a CNN, had mean accuracy of 79.2%, 80.1% and 81.4%, respectively. Conclusion: The FBCNNs surpassed traditional SSVEP classification methods in our simulated BCI, by a considerable margin (about 5% higher accuracy). Transfer learning and inter-dimensional transfer learning made training much faster and more predictable. Significance: We proposed a new and flexible type of DNN, which had a better performance than standard methods in SSVEP classification for portable and fast BCIs.
Transfer Learning and SpecAugment applied to SSVEP Based BCI Classification
Bassi, Pedro R. A. S., Rampazzo, Willian, Attux, Romis
In this work, we used a deep convolutional neural network (DCNN) to classify electroencephalography (EEG) signals in a steady-state visually evoked potentials (SSVEP) based brain-computer interface (BCI). The raw EEG signals were converted to spectrograms and served as input to train a DCNN using the transfer learning technique. We applied a second technique, data augmentation, mostly SpecAugment, generally employed to speech recognition. The results, when excluding the evaluated user's data from the fine-tuning process, reached 99.3% mean test accuracy and 0.992 mean F1 score on 35 subjects from an open dataset.
A multi-objective-based approach for Fair Principal Component Analysis
Pelegrina, Guilherme D., Brotto, Renan D. B., Duarte, Leonardo T., Romano, João M. T., Attux, Romis
In dimension reduction problems, the adopted technique may produce disparities between the representation errors of two or more different groups. For instance, in the projected space, a specific class can be better represented in comparison with the other ones. Depending on the situation, this unfair result may introduce ethical concerns. In this context, this paper investigates how a fairness measure can be considered when performing dimension reduction through principal component analysis. Since both reconstruction error and fairness measure must be taken into account, we propose a multi-objective-based approach to tackle the Fair Principal Component Analysis problem. The experiments attest that a fairer result can be achieved with a very small loss in the reconstruction error.