Attias, Maayane
RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models
Van Veen, Dave, Van Uden, Cara, Attias, Maayane, Pareek, Anuj, Bluethgen, Christian, Polacin, Malgorzata, Chiu, Wah, Delbrouck, Jean-Benoit, Chaves, Juan Manuel Zambrano, Langlotz, Curtis P., Chaudhari, Akshay S., Pauly, John
We systematically investigate lightweight strategies to adapt large language models (LLMs) for the task of radiology report summarization (RRS). Specifically, we focus on domain adaptation via pretraining (on natural language, biomedical text, or clinical text) and via discrete prompting or parameter-efficient fine-tuning. Our results consistently achieve best performance by maximally adapting to the task via pretraining on clinical text and fine-tuning on RRS examples. Importantly, this method fine-tunes a mere 0.32% of parameters throughout the model, in contrast to end-to-end fine-tuning (100% of parameters). Additionally, we study the effect of in-context examples and out-of-distribution (OOD) training before concluding with a radiologist reader study and qualitative analysis. Our findings highlight the importance of domain adaptation in RRS and provide valuable insights toward developing effective natural language processing solutions for clinical tasks.
Automated Drug-Related Information Extraction from French Clinical Documents: ReLyfe Approach
Alwan, Azzam, Attias, Maayane, Rubin, Larry, Bakri, Adnan El
Structuring medical data in France remains a challenge mainly because of the lack of medical data due to privacy concerns and the lack of methods and approaches on processing the French language. One of these challenges is structuring drug-related information in French clinical documents. To our knowledge, over the last decade, there are less than five relevant papers that study French prescriptions. This paper proposes a new approach for extracting drug-related information from French clinical scanned documents while preserving patients' privacy. In addition, we deployed our method in a health data management platform where it is used to structure drug medical data and help patients organize their drug schedules. It can be implemented on any web or mobile platform. This work closes the gap between theoretical and practical work by creating an application adapted to real production problems. It is a combination of a rule-based phase and a Deep Learning approach. Finally, numerical results show the outperformance and relevance of the proposed methodology.