Goto

Collaborating Authors

 Attias, Hagai


Inferring Parameters and Structure of Latent Variable Models by Variational Bayes

arXiv.org Machine Learning

Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior distributions over the parameters remains a difficult problem. Moreover, learning the structure of models with latent variables, for which the Bayesian approach is crucial, is yet a harder problem. In this paper I present the Variational Bayes framework, which provides a solution to these problems. This approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner without resorting to sampling methods. Unlike in the Laplace approximation, these posteriors are generally non-Gaussian and no Hessian needs to be computed. The resulting algorithm generalizes the standard Expectation Maximization algorithm, and its convergence is guaranteed. I demonstrate that this algorithm can be applied to a large class of models in several domains, including unsupervised clustering and blind source separation.


Source Separation with a Sensor Array using Graphical Models and Subband Filtering

Neural Information Processing Systems

Source separation is an important problem at the intersection of several fields, including machine learning, signal processing, and speech technology. Here we describe new separation algorithms which are based on probabilistic graphical models with latent variables. In contrast with existing methods, these algorithms exploit detailed models to describe source properties. They also use subband filtering ideas to model the reverberant environment, and employ an explicit model for background and sensor noise. We leverage variational techniques to keep the computational complexity per EM iteration linear in the number of frames.


Source Separation with a Sensor Array using Graphical Models and Subband Filtering

Neural Information Processing Systems

Source separation is an important problem at the intersection of several fields, including machine learning, signal processing, and speech technology. Here we describe new separation algorithms which are based on probabilistic graphical models with latent variables. In contrast with existing methods, these algorithms exploit detailed models to describe source properties. They also use subband filtering ideas to model the reverberant environment, and employ an explicit model for background and sensor noise. We leverage variational techniques to keep the computational complexity per EM iteration linear in the number of frames.


Source Separation with a Sensor Array using Graphical Models and Subband Filtering

Neural Information Processing Systems

Source separation is an important problem at the intersection of several fields, including machine learning, signal processing, and speech technology. Herewe describe new separation algorithms which are based on probabilistic graphical models with latent variables. In contrast with existing methods, these algorithms exploit detailed models to describe source properties. They also use subband filtering ideas to model the reverberant environment, and employ an explicit model for background and sensor noise. We leverage variational techniques to keep the computational complexityper EM iteration linear in the number of frames.


Speech Denoising and Dereverberation Using Probabilistic Models

Neural Information Processing Systems

This paper presents a unified probabilistic framework for denoising and dereverberation of speech signals. The framework transforms the denoising and dereverberation problems into Bayes-optimal signal estimation. The key idea is to use a strong speech model that is pre-trained on a large data set of clean speech. Computational efficiency is achieved by using variational EM, working in the frequency domain, and employing conjugate priors. The framework covers both single and multiple microphones. We apply this approach to noisy reverberant speech signals and get results substantially better than standard methods.


Speech Denoising and Dereverberation Using Probabilistic Models

Neural Information Processing Systems

This paper presents a unified probabilistic framework for denoising and dereverberation of speech signals. The framework transforms the denoising and dereverberation problems into Bayes-optimal signal estimation. The key idea is to use a strong speech model that is pre-trained on a large data set of clean speech. Computational efficiency is achieved by using variational EM, working in the frequency domain, and employing conjugate priors. The framework covers both single and multiple microphones. We apply this approach to noisy reverberant speech signals and get results substantially better than standard methods.


Speech Denoising and Dereverberation Using Probabilistic Models

Neural Information Processing Systems

This paper presents a unified probabilistic framework for denoising and dereverberation of speech signals. The framework transforms the denoising anddereverberation problems into Bayes-optimal signal estimation. The key idea is to use a strong speech model that is pre-trained on a large data set of clean speech. Computational efficiency is achieved by using variational EM, working in the frequency domain, and employing conjugate priors. The framework covers both single and multiple microphones. Weapply this approach to noisy reverberant speech signals and get results substantially better than standard methods.


A Variational Baysian Framework for Graphical Models

Neural Information Processing Systems

This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner.These posteriors fall out of a free-form optimization procedure, which naturally incorporates conjugate priors. Unlike in large sample approximations, the posteriors are generally non Gaussian and no Hessian needs to be computed.


Independent Factor Analysis with Temporally Structured Sources

Neural Information Processing Systems

We present a new technique for time series analysis based on dynamic probabilisticnetworks. In this approach, the observed data are modeled in terms of unobserved, mutually independent factors, as in the recently introduced technique of Independent Factor Analysis (IFA).However, unlike in IFA, the factors are not Li.d.; each factor has its own temporal statistical characteristics. We derive a family of EM algorithms that learn the structure of the underlying factors and their relation to the data. These algorithms perform source separation and noise reduction in an integrated manner, and demonstrate superior performance compared to IFA. 1 Introduction The technique of independent factor analysis (IFA) introduced in [1] provides a tool for modeling L'-dim data in terms of L unobserved factors. These factors are mutually independent and combine linearly with added noise to produce the observed data.


A Variational Baysian Framework for Graphical Models

Neural Information Processing Systems

This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors fall out of a free-form optimization procedure, which naturally incorporates conjugate priors. Unlike in large sample approximations, the posteriors are generally non Gaussian and no Hessian needs to be computed. Predictive quantities are obtained analytically. The resulting algorithm generalizes the standard Expectation Maximization algorithm, and its convergence is guaranteed. We demonstrate that this approach can be applied to a large class of models in several domains, including mixture models and source separation. 1 Introduction