Atri, Yash Kumar
Exploiting Representation Bias for Data Distillation in Abstractive Text Summarization
Atri, Yash Kumar, Goyal, Vikram, Chakraborty, Tanmoy
Abstractive text summarization is surging with the number of training samples to cater to the needs of the deep learning models. These models tend to exploit the training data representations to attain superior performance by improving the quantitative element of the resultant summary. However, increasing the size of the training set may not always be the ideal solution to maximize the performance, and therefore, a need to revisit the quality of training samples and the learning protocol of deep learning models is a must. In this paper, we aim to discretize the vector space of the abstractive text summarization models to understand the characteristics learned between the input embedding space and the models' encoder space. We show that deep models fail to capture the diversity of the input space. Further, the distribution of data points on the encoder space indicates that an unchecked increase in the training samples does not add value; rather, a tear-down of data samples is highly needed to make the models focus on variability and faithfulness. We employ clustering techniques to learn the diversity of a model's sample space and how data points are mapped from the embedding space to the encoder space and vice versa. Further, we devise a metric to filter out redundant data points to make the model more robust and less data hungry. We benchmark our proposed method using quantitative metrics, such as Rouge, and qualitative metrics, such as BERTScore, FEQA and Pyramid score. We also quantify the reasons that inhibit the models from learning the diversity from the varied input samples.
Fusing Multimodal Signals on Hyper-complex Space for Extreme Abstractive Text Summarization (TL;DR) of Scientific Contents
Atri, Yash Kumar, Goyal, Vikram, Chakraborty, Tanmoy
The realm of scientific text summarization has experienced remarkable progress due to the availability of annotated brief summaries and ample data. However, the utilization of multiple input modalities, such as videos and audio, has yet to be thoroughly explored. At present, scientific multimodal-input-based text summarization systems tend to employ longer target summaries like abstracts, leading to an underwhelming performance in the task of text summarization. In this paper, we deal with a novel task of extreme abstractive text summarization (aka TL;DR generation) by leveraging multiple input modalities. To this end, we introduce mTLDR, a first-of-its-kind dataset for the aforementioned task, comprising videos, audio, and text, along with both author-composed summaries and expert-annotated summaries. The mTLDR dataset accompanies a total of 4,182 instances collected from various academic conference proceedings, such as ICLR, ACL, and CVPR. Subsequently, we present mTLDRgen, an encoder-decoder-based model that employs a novel dual-fused hyper-complex Transformer combined with a Wasserstein Riemannian Encoder Transformer, to dexterously capture the intricacies between different modalities in a hyper-complex latent geometric space. The hyper-complex Transformer captures the intrinsic properties between the modalities, while the Wasserstein Riemannian Encoder Transformer captures the latent structure of the modalities in the latent space geometry, thereby enabling the model to produce diverse sentences. mTLDRgen outperforms 20 baselines on mTLDR as well as another non-scientific dataset (How2) across three Rouge-based evaluation measures. Furthermore, based on the qualitative metrics, BERTScore and FEQA, and human evaluations, we demonstrate that the summaries generated by mTLDRgen are fluent and congruent to the original source material.
Inline Citation Classification using Peripheral Context and Time-evolving Augmentation
Gupta, Priyanshi, Atri, Yash Kumar, Nagvenkar, Apurva, Dasgupta, Sourish, Chakraborty, Tanmoy
Citation plays a pivotal role in determining the associations among research articles. It portrays essential information in indicative, supportive, or contrastive studies. The task of inline citation classification aids in extrapolating these relationships; However, existing studies are still immature and demand further scrutiny. Current datasets and methods used for inline citation classification only use citation-marked sentences constraining the model to turn a blind eye to domain knowledge and neighboring contextual sentences. In this paper, we propose a new dataset, named 3Cext, which along with the cited sentences, provides discourse information using the vicinal sentences to analyze the contrasting and entailing relationships as well as domain information. We propose PeriCite, a Transformer-based deep neural network that fuses peripheral sentences and domain knowledge. Our model achieves the state-of-the-art on the 3Cext dataset by +0.09 F1 against the best baseline. We conduct extensive ablations to analyze the efficacy of the proposed dataset and model fusion methods.