Atrey, Akanksha
SODA: Protecting Proprietary Information in On-Device Machine Learning Models
Atrey, Akanksha, Sinha, Ritwik, Mitra, Saayan, Shenoy, Prashant
The growth of low-end hardware has led to a proliferation of machine learning-based services in edge applications. These applications gather contextual information about users and provide some services, such as personalized offers, through a machine learning (ML) model. A growing practice has been to deploy such ML models on the user's device to reduce latency, maintain user privacy, and minimize continuous reliance on a centralized source. However, deploying ML models on the user's edge device can leak proprietary information about the service provider. In this work, we investigate on-device ML models that are used to provide mobile services and demonstrate how simple attacks can leak proprietary information of the service provider. We show that different adversaries can easily exploit such models to maximize their profit and accomplish content theft. Motivated by the need to thwart such attacks, we present an end-to-end framework, SODA, for deploying and serving on edge devices while defending against adversarial usage. Our results demonstrate that SODA can detect adversarial usage with 89% accuracy in less than 50 queries with minimal impact on service performance, latency, and storage.
Measuring and Characterizing Generalization in Deep Reinforcement Learning
Witty, Sam, Lee, Jun Ki, Tosch, Emma, Atrey, Akanksha, Littman, Michael, Jensen, David
Deep reinforcement-learning methods have achieved remarkable performance on challenging control tasks. Observations of the resulting behavior give the impression that the agent has constructed a generalized representation that supports insightful action decisions. We re-examine what is meant by generalization in RL, and propose several definitions based on an agent's performance in on-policy, off-policy, and unreachable states. We propose a set of practical methods for evaluating agents with these definitions of generalization. We demonstrate these techniques on a common benchmark task for deep RL, and we show that the learned networks make poor decisions for states that differ only slightly from on-policy states, even though those states are not selected adversarially. Taken together, these results call into question the extent to which deep Q-networks learn generalized representations, and suggest that more experimentation and analysis is necessary before claims of representation learning can be supported.