Goto

Collaborating Authors

 Atito, Sara


Rethinking Positive Pairs in Contrastive Learning

arXiv.org Artificial Intelligence

Contrastive learning, a prominent approach to representation learning, traditionally assumes positive pairs are closely related samples (the same image or class) and negative pairs are distinct samples. We challenge this assumption by proposing to learn from arbitrary pairs, allowing any pair of samples to be positive within our framework.The primary challenge of the proposed approach lies in applying contrastive learning to disparate pairs which are semantically distant. Motivated by the discovery that SimCLR can separate given arbitrary pairs (e.g., garter snake and table lamp) in a subspace, we propose a feature filter in the condition of class pairs that creates the requisite subspaces by gate vectors selectively activating or deactivating dimensions. This filter can be optimized through gradient descent within a conventional contrastive learning mechanism. We present Hydra, a universal contrastive learning framework for visual representations that extends conventional contrastive learning to accommodate arbitrary pairs. Our approach is validated using IN1K, where 1K diverse classes compose 500,500 pairs, most of them being distinct. Surprisingly, Hydra achieves superior performance in this challenging setting. Additional benefits include the prevention of dimensional collapse and the discovery of class relationships. Our work highlights the value of learning common features of arbitrary pairs and potentially broadens the applicability of contrastive learning techniques on the sample pairs with weak relationships.


Pseudo Labelling for Enhanced Masked Autoencoders

arXiv.org Artificial Intelligence

Masked Image Modeling (MIM)-based models, such as SdAE, CAE, GreenMIM, and MixAE, have explored different strategies to enhance the performance of Masked Autoencoders (MAE) by modifying prediction, loss functions, or incorporating additional architectural components. In this paper, we propose an enhanced approach that boosts MAE performance by integrating pseudo labelling for both class and data tokens, alongside replacing the traditional pixel-level reconstruction with token-level reconstruction. This strategy uses cluster assignments as pseudo labels to promote instance-level discrimination within the network, while token reconstruction requires generation of discrete tokens encapturing local context. The targets for pseudo labelling and reconstruction needs to be generated by a teacher network. To disentangle the generation of target pseudo labels and the reconstruction of the token features, we decouple the teacher into two distinct models, where one serves as a labelling teacher and the other as a reconstruction teacher. This separation proves empirically superior to a single teacher, while having negligible impact on throughput and memory consumption. Incorporating pseudo-labelling as an auxiliary task has demonstrated notable improvements in ImageNet-1K and other downstream tasks, including classification, semantic segmentation, and detection.


DailyMAE: Towards Pretraining Masked Autoencoders in One Day

arXiv.org Artificial Intelligence

Recently, masked image modeling (MIM), an important self-supervised learning (SSL) method, has drawn attention for its effectiveness in learning data representation from unlabeled data. Numerous studies underscore the advantages of MIM, highlighting how models pretrained on extensive datasets can enhance the performance of downstream tasks. However, the high computational demands of pretraining pose significant challenges, particularly within academic environments, thereby impeding the SSL research progress. In this study, we propose efficient training recipes for MIM based SSL that focuses on mitigating data loading bottlenecks and employing progressive training techniques and other tricks to closely maintain pretraining performance. Our library enables the training of a MAE-Base/16 model on the ImageNet 1K dataset for 800 epochs within just 18 hours, using a single machine equipped with 8 A100 GPUs. By achieving speed gains of up to 5.8 times, this work not only demonstrates the feasibility of conducting high-efficiency SSL training but also paves the way for broader accessibility and promotes advancement in SSL research particularly for prototyping and initial testing of SSL ideas. The code is available in https://github.com/erow/FastSSL.


DiCoM -- Diverse Concept Modeling towards Enhancing Generalizability in Chest X-Ray Studies

arXiv.org Artificial Intelligence

Chest X-Ray (CXR) is a widely used clinical imaging modality and has a pivotal role in the diagnosis and prognosis of various lung and heart related conditions. Conventional automated clinical diagnostic tool design strategies relying on radiology reads and supervised learning, entail the cumbersome requirement of high quality annotated training data. To address this challenge, self-supervised pre-training has proven to outperform supervised pre-training in numerous downstream vision tasks, representing a significant breakthrough in the field. However, medical imaging pre-training significantly differs from pre-training with natural images (e.g., ImageNet) due to unique attributes of clinical images. In this context, we introduce Diverse Concept Modeling (DiCoM), a novel self-supervised training paradigm that leverages a student teacher framework for learning diverse concepts and hence effective representation of the CXR data. Hence, expanding beyond merely modeling a single primary label within an image, instead, effectively harnessing the information from all the concepts inherent in the CXR. The pre-trained model is subsequently fine-tuned to address diverse domain-specific tasks. Our proposed paradigm consistently demonstrates robust performance across multiple downstream tasks on multiple datasets, highlighting the success and generalizability of the pre-training strategy. To establish the efficacy of our methods we analyze both the power of learned representations and the speed of convergence (SoC) of our models. For diverse data and tasks, DiCoM is able to achieve in most cases better results compared to other state-of-the-art pre-training strategies. This when combined with the higher SoC and generalization capabilities positions DiCoM to be established as a foundation model for CXRs, a widely used imaging modality.


LT-ViT: A Vision Transformer for multi-label Chest X-ray classification

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) are widely adopted in medical imaging tasks, and some existing efforts have been directed towards vision-language training for Chest X-rays (CXRs). However, we envision that there still exists a potential for improvement in vision-only training for CXRs using ViTs, by aggregating information from multiple scales, which has been proven beneficial for non-transformer networks. Hence, we have developed LT-ViT, a transformer that utilizes combined attention between image tokens and randomly initialized auxiliary tokens that represent labels. Our experiments demonstrate that LT-ViT (1) surpasses the state-of-the-art performance using pure ViTs on two publicly available CXR datasets, (2) is generalizable to other pre-training methods and therefore is agnostic to model initialization, and (3) enables model interpretability without grad-cam and its variants.


Variantional autoencoder with decremental information bottleneck for disentanglement

arXiv.org Artificial Intelligence

One major challenge of disentanglement learning with variational autoencoders is the trade-off between disentanglement and reconstruction fidelity. Previous studies, which increase the information bottleneck during training, tend to lose the constraint of disentanglement, leading to the information diffusion problem. In this paper, we present a novel framework for disentangled representation learning, DeVAE, which utilizes hierarchical latent spaces with decreasing information bottlenecks across these spaces. The key innovation of our approach lies in connecting the hierarchical latent spaces through disentanglement-invariant transformations, allowing the sharing of disentanglement properties among spaces while maintaining an acceptable level of reconstruction performance. We demonstrate the effectiveness of DeVAE in achieving a balance between disentanglement and reconstruction through a series of experiments and ablation studies on dSprites and Shapes3D datasets. Code is available at https://github.com/erow/disentanglement_lib/tree/pytorch#devae.


Masked Momentum Contrastive Learning for Zero-shot Semantic Understanding

arXiv.org Artificial Intelligence

Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data. In the realm of computer vision, pretrained vision transformers (ViTs) have played a pivotal role in advancing transfer learning. Nonetheless, the escalating cost of finetuning these large models has posed a challenge due to the explosion of model size. This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks, obviating the need for finetuning, with the intention of emulating human-like capabilities in generalisation and recognition of unseen objects. To this end, we propose an evaluation protocol for zero-shot segmentation based on a prompting patch. Given a point on the target object as a prompt, the algorithm calculates the similarity map between the selected patch and other patches, upon that, a simple thresholding is applied to segment the target. Another evaluation is intra-object and inter-object similarity to gauge discriminatory ability of SSP ViTs. Insights from zero-shot segmentation from prompting and discriminatory abilities of SSP led to the design of a simple SSP approach, termed MMC. This approaches combines Masked image modelling for encouraging similarity of local features, Momentum based self-distillation for transferring semantics from global to local features, and global Contrast for promoting semantics of global features, to enhance discriminative representations of SSP ViTs. Consequently, our proposed method significantly reduces the overlap of intra-object and inter-object similarities, thereby facilitating effective object segmentation within an image. Our experiments reveal that MMC delivers top-tier results in zero-shot semantic segmentation across various datasets.


SiT: Self-supervised vIsion Transformer

arXiv.org Artificial Intelligence

Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: https://github.com/Sara-Ahmed/SiT.