Goto

Collaborating Authors

 Athanasiadis, Ioannis N.


AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment

arXiv.org Artificial Intelligence

Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization, contributing significantly to morbidity and mortality rates. In this paper, we introduce AirCast, a novel multi-variable air pollution forecasting model, by combining weather and air quality variables. AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations, improving its understanding of how weather patterns affect air quality. Predicting extreme pollution events is challenging due to their rare occurrence in historic data, resulting in a heavy-tailed distribution of pollution levels. To address this, we propose a novel Frequency-weighted Mean Absolute Error (fMAE) loss, adapted from the class-balanced loss for regression tasks. Informed from domain knowledge, we investigate the selection of key variables known to influence pollution levels. Additionally, we align existing weather and chemical datasets across spatial and temporal dimensions. AirCast's integrated approach, combining multi-task learning, frequency weighted loss and domain informed variable selection, enables more accurate pollution forecasts. Our source code and models are made public here (https://github.com/vishalned/AirCast.git)


To Measure or Not: A Cost-Sensitive, Selective Measuring Environment for Agricultural Management Decisions with Reinforcement Learning

arXiv.org Artificial Intelligence

Farmers rely on in-field observations to make well-informed crop management decisions to maximize profit and minimize adverse environmental impact. However, obtaining real-world crop state measurements is labor-intensive, time-consuming and expensive. In most cases, it is not feasible to gather crop state measurements before every decision moment. Moreover, in previous research pertaining to farm management optimization, these observations are often assumed to be readily available without any cost, which is unrealistic. Hence, enabling optimization without the need to have temporally complete crop state observations is important. An approach to that problem is to include measuring as part of decision making. As a solution, we apply reinforcement learning (RL) to recommend opportune moments to simultaneously measure crop features and apply nitrogen fertilizer. With realistic considerations, we design an RL environment with explicit crop feature measuring costs. While balancing costs, we find that an RL agent, trained with recurrent PPO, discovers adaptive measuring policies that follow critical crop development stages, with results aligned by what domain experts would consider a sensible approach. Our results highlight the importance of measuring when crop feature measurements are not readily available.


Fully automatic extraction of morphological traits from the Web: utopia or reality?

arXiv.org Artificial Intelligence

Plant morphological traits, their observable characteristics, are fundamental to understand the role played by each species within their ecosystem. However, compiling trait information for even a moderate number of species is a demanding task that may take experts years to accomplish. At the same time, massive amounts of information about species descriptions is available online in the form of text, although the lack of structure makes this source of data impossible to use at scale. To overcome this, we propose to leverage recent advances in large language models (LLMs) and devise a mechanism for gathering and processing information on plant traits in the form of unstructured textual descriptions, without manual curation. We evaluate our approach by automatically replicating three manually created species-trait matrices. Our method managed to find values for over half of all species-trait pairs, with an F1-score of over 75%. Our results suggest that large-scale creation of structured trait databases from unstructured online text is currently feasible thanks to the information extraction capabilities of LLMs, being limited by the availability of textual descriptions covering all the traits of interest.


Breeding Programs Optimization with Reinforcement Learning

arXiv.org Artificial Intelligence

Crop breeding is crucial in improving agricultural productivity while potentially decreasing land usage, greenhouse gas emissions, and water consumption. However, breeding programs are challenging due to long turnover times, high-dimensional decision spaces, long-term objectives, and the need to adapt to rapid climate change. This paper introduces the use of Reinforcement Learning (RL) to optimize simulated crop breeding programs. RL agents are trained to make optimal crop selection and cross-breeding decisions based on genetic information. To benchmark RL-based breeding algorithms, we introduce a suite of Gym environments. The study demonstrates the superiority of RL techniques over standard practices in terms of genetic gain when simulated in silico using real-world genomic maize data.


Integrating processed-based models and machine learning for crop yield prediction

arXiv.org Artificial Intelligence

Crop yield prediction typically involves the utilization of either theory-driven process-based crop growth models, which have proven to be difficult to calibrate for local conditions, or data-driven machine learning methods, which are known to require large datasets. In this work we investigate potato yield prediction using a hybrid meta-modeling approach. A crop growth model is employed to generate synthetic data for (pre)training a convolutional neural net, which is then fine-tuned with observational data. When applied in silico, our meta-modeling approach yields better predictions than a baseline comprising a purely data-driven approach. When tested on real-world data from field trials (n=303) and commercial fields (n=77), the meta-modeling approach yields competitive results with respect to the crop growth model. In the latter set, however, both models perform worse than a simple linear regression with a hand-picked feature set and dedicated preprocessing designed by domain experts. Our findings indicate the potential of meta-modeling for accurate crop yield prediction; however, further advancements and validation using extensive real-world datasets is recommended to solidify its practical effectiveness.