Asuncion, Arthur
On Smoothing and Inference for Topic Models
Asuncion, Arthur, Welling, Max, Smyth, Padhraic, Teh, Yee Whye
Latent Dirichlet analysis, or topic modeling, is a flexible latent variable framework for modeling high-dimensional sparse count data. Various learning algorithms have been developed in recent years, including collapsed Gibbs sampling, variational inference, and maximum a posteriori estimation, and this variety motivates the need for careful empirical comparisons. In this paper, we highlight the close connections between these approaches. We find that the main differences are attributable to the amount of smoothing applied to the counts. When the hyperparameters are optimized, the differences in performance among the algorithms diminish significantly. The ability of these algorithms to achieve solutions of comparable accuracy gives us the freedom to select computationally efficient approaches. Using the insights gained from this comparative study, we show how accurate topic models can be learned in several seconds on text corpora with thousands of documents.
Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures
Porteous, Ian (University of California Irvine) | Asuncion, Arthur (University of California Irvine) | Welling, Max (University of California Irvine)
Matrix factorization is a fundamental technique in machine learning that is applicable to collaborative filtering, information retrieval and many other areas. In collaborative filtering and many other tasks, the objective is to fill in missing elements of a sparse data matrix. One of the biggest challenges in this case is filling in a column or row of the matrix with very few observations. In this paper we introduce a Bayesian matrix factorization model that performs regression against side information known about the data in addition to the observations. The side information helps by adding observed entries to the factored matrices. We also introduce a nonparametric mixture model for the prior of the rows and columns of the factored matrices that gives a different regularization for each latent class. Besides providing a richer prior, the posterior distribution of mixture assignments reveals the latent classes. Using Gibbs sampling for inference, we apply our model to the Netflix Prize problem of predicting movie ratings given an incomplete user-movie ratings matrix. Incorporating rating information with gathered metadata information, our Bayesian approach outperforms other matrix factorization techniques even when using fewer dimensions.