Goto

Collaborating Authors

 Arthur Guez


Learning values across many orders of magnitude

Neural Information Processing Systems

Most learning algorithms are not invariant to the scale of the signal that is being approximated. We propose to adaptively normalize the targets used in the learning updates. This is important in value-based reinforcement learning, where the magnitude of appropriate value approximations can change over time when we update the policy of behavior. Our main motivation is prior work on learning to play Atari games, where the rewards were clipped to a predetermined range. This clipping facilitates learning across many different games with a single learning algorithm, but a clipped reward function can result in qualitatively different behavior. Using adaptive normalization we can remove this domain-specific heuristic without diminishing overall performance.


Imagination-Augmented Agents for Deep Reinforcement Learning

Neural Information Processing Systems

We introduce Imagination-Augmented Agents (I2As), a novel architecture for deep reinforcement learning combining model-free and model-based aspects. In contrast to most existing model-based reinforcement learning and planning methods, which prescribe how a model should be used to arrive at a policy, I2As learn to interpret predictions from a learned environment model to construct implicit plans in arbitrary ways, by using the predictions as additional context in deep policy networks. I2As show improved data efficiency, performance, and robustness to model misspecification compared to several baselines.