Goto

Collaborating Authors

 Arora, Siddhant


Reproducing Whisper-Style Training Using an Open-Source Toolkit and Publicly Available Data

arXiv.org Artificial Intelligence

Pre-training speech models on large volumes of data has achieved remarkable success. OpenAI Whisper is a multilingual multitask model trained on 680k hours of supervised speech data. It generalizes well to various speech recognition and translation benchmarks even in a zero-shot setup. However, the full pipeline for developing such models (from data collection to training) is not publicly accessible, which makes it difficult for researchers to further improve its performance and address training-related issues such as efficiency, robustness, fairness, and bias. This work presents an Open Whisper-style Speech Model (OWSM), which reproduces Whisper-style training using an open-source toolkit and publicly available data. OWSM even supports more translation directions and can be more efficient to train. We will publicly release all scripts used for data preparation, training, inference, and scoring as well as pre-trained models and training logs to promote open science.


UniverSLU: Universal Spoken Language Understanding for Diverse Classification and Sequence Generation Tasks with a Single Network

arXiv.org Artificial Intelligence

Recent studies have demonstrated promising outcomes by employing large language models with multi-tasking capabilities. They utilize prompts to guide the model's behavior and surpass performance of task-specific models. Motivated by this, we ask: can we build a single model that jointly perform various spoken language understanding (SLU) tasks? To address this, we utilize pre-trained automatic speech recognition (ASR) models and employ various task and dataset specifiers as discrete prompts. We demonstrate efficacy of our single multi-task learning (MTL) model "UniverSLU" for 12 different speech classification and sequence generation tasks across 17 datasets and 9 languages. Results show that UniverSLU achieves competitive performance and even surpasses task-specific models. We also conduct preliminary investigations into enabling human-interpretable natural phrases instead of task specifiers as discrete prompts and test the model's generalization capabilities to new paraphrases.


Semi-Autoregressive Streaming ASR With Label Context

arXiv.org Artificial Intelligence

Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy.


Dynamic-SUPERB: Towards A Dynamic, Collaborative, and Comprehensive Instruction-Tuning Benchmark for Speech

arXiv.org Artificial Intelligence

Text language models have shown remarkable zero-shot capability in generalizing to unseen tasks when provided with well-formulated instructions. However, existing studies in speech processing primarily focus on limited or specific tasks. Moreover, the lack of standardized benchmarks hinders a fair comparison across different approaches. Thus, we present Dynamic-SUPERB, a benchmark designed for building universal speech models capable of leveraging instruction tuning to perform multiple tasks in a zero-shot fashion. To achieve comprehensive coverage of diverse speech tasks and harness instruction tuning, we invite the community to collaborate and contribute, facilitating the dynamic growth of the benchmark. To initiate, Dynamic-SUPERB features 55 evaluation instances by combining 33 tasks and 22 datasets. This spans a broad spectrum of dimensions, providing a comprehensive platform for evaluation. Additionally, we propose several approaches to establish benchmark baselines. These include the utilization of speech models, text language models, and the multimodal encoder. Evaluation results indicate that while these baselines perform reasonably on seen tasks, they struggle with unseen ones. We also conducted an ablation study to assess the robustness and seek improvements in the performance. We release all materials to the public and welcome researchers to collaborate on the project, advancing technologies in the field together.


Integrating Pretrained ASR and LM to Perform Sequence Generation for Spoken Language Understanding

arXiv.org Artificial Intelligence

There has been an increased interest in the integration of pretrained speech recognition (ASR) and language models (LM) into the SLU framework. However, prior methods often struggle with a vocabulary mismatch between pretrained models, and LM cannot be directly utilized as they diverge from its NLU formulation. In this study, we propose a three-pass end-to-end (E2E) SLU system that effectively integrates ASR and LM subnetworks into the SLU formulation for sequence generation tasks. In the first pass, our architecture predicts ASR transcripts using the ASR subnetwork. This is followed by the LM subnetwork, which makes an initial SLU prediction. Finally, in the third pass, the deliberation subnetwork conditions on representations from the ASR and LM subnetworks to make the final prediction. Our proposed three-pass SLU system shows improved performance over cascaded and E2E SLU models on two benchmark SLU datasets, SLURP and SLUE, especially on acoustically challenging utterances.


BASS: Block-wise Adaptation for Speech Summarization

arXiv.org Artificial Intelligence

End-to-end speech summarization has been shown to improve performance over cascade baselines. However, such models are difficult to train on very large inputs (dozens of minutes or hours) owing to compute restrictions and are hence trained with truncated model inputs. Truncation leads to poorer models, and a solution to this problem rests in block-wise modeling, i.e., processing a portion of the input frames at a time. In this paper, we develop a method that allows one to train summarization models on very long sequences in an incremental manner. Speech summarization is realized as a streaming process, where hypothesis summaries are updated every block based on new acoustic information. We devise and test strategies to pass semantic context across the blocks. Experiments on the How2 dataset demonstrate that the proposed block-wise training method improves by 3 points absolute on ROUGE-L over a truncated input baseline.


SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks

arXiv.org Artificial Intelligence

Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.


A Comparative Study on E-Branchformer vs Conformer in Speech Recognition, Translation, and Understanding Tasks

arXiv.org Artificial Intelligence

Conformer, a convolution-augmented Transformer variant, has become the de facto encoder architecture for speech processing due to its superior performance in various tasks, including automatic speech recognition (ASR), speech translation (ST) and spoken language understanding (SLU). Recently, a new encoder called E-Branchformer has outperformed Conformer in the LibriSpeech ASR benchmark, making it promising for more general speech applications. This work compares E-Branchformer and Conformer through extensive experiments using different types of end-to-end sequence-to-sequence models. Results demonstrate that E-Branchformer achieves comparable or better performance than Conformer in almost all evaluation sets across 15 ASR, 2 ST, and 3 SLU benchmarks, while being more stable during training. We will release our training configurations and pre-trained models for reproducibility, which can benefit the speech community.


Streaming Joint Speech Recognition and Disfluency Detection

arXiv.org Artificial Intelligence

Disfluency detection has mainly been solved in a pipeline approach, as post-processing of speech recognition. In this study, we propose Transformer-based encoder-decoder models that jointly solve speech recognition and disfluency detection, which work in a streaming manner. Compared to pipeline approaches, the joint models can leverage acoustic information that makes disfluency detection robust to recognition errors and provide non-verbal clues. Moreover, joint modeling results in low-latency and lightweight inference. We investigate two joint model variants for streaming disfluency detection: a transcript-enriched model and a multi-task model. The transcript-enriched model is trained on text with special tags indicating the starting and ending points of the disfluent part. However, it has problems with latency and standard language model adaptation, which arise from the additional disfluency tags. We propose a multi-task model to solve such problems, which has two output layers at the Transformer decoder; one for speech recognition and the other for disfluency detection. It is modeled to be conditioned on the currently recognized token with an additional token-dependency mechanism. We show that the proposed joint models outperformed a BERT-based pipeline approach in both accuracy and latency, on both the Switchboard and the corpus of spontaneous Japanese.


The Pipeline System of ASR and NLU with MLM-based Data Augmentation toward STOP Low-resource Challenge

arXiv.org Artificial Intelligence

This paper describes our system for the low-resource domain adaptation track (Track 3) in Spoken Language Understanding Grand Challenge, which is a part of ICASSP Signal Processing Grand Challenge 2023. In the track, we adopt a pipeline approach of ASR and NLU. For ASR, we fine-tune Whisper for each domain with upsampling. For NLU, we fine-tune BART on all the Track3 data and then on low-resource domain data. We apply masked LM (MLM) -based data augmentation, where some of input tokens and corresponding target labels are replaced using MLM. We also apply a retrieval-based approach, where model input is augmented with similar training samples. As a result, we achieved exact match (EM) accuracy 63.3/75.0 (average: 69.15) for reminder/weather domain, and won the 1st place at the challenge.