Arnaud Doucet
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini, Arnaud Doucet, Dino Sejdinovic
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini, Arnaud Doucet, Dino Sejdinovic
Variational Auto-Encoders (VAEs) have become very popular techniques to perform inference and learning in latent variable models: they allow us to leverage the rich representational power of neural networks to obtain flexible approximations of the posterior of latent variables as well as tight evidence lower bounds (ELBOs). Combined with stochastic variational inference, this provides a methodology scaling to large datasets. However, for this methodology to be practically efficient, it is necessary to obtain low-variance unbiased estimators of the ELBO and its gradients with respect to the parameters of interest. While the use of Markov chain Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo (HMC) has been previously suggested to achieve this [25, 28], the proposed methods require specifying reverse kernels which have a large impact on performance. Additionally, the resulting unbiased estimator of the ELBO for most MCMC kernels is typically not amenable to the reparameterization trick. We show here how to optimally select reverse kernels in this setting and, by building upon Hamiltonian Importance Sampling (HIS) [19], we obtain a scheme that provides low-variance unbiased estimators of the ELBO and its gradients using the reparameterization trick. This allows us to develop a Hamiltonian Variational Auto-Encoder (HVAE). This method can be re-interpreted as a target-informed normalizing flow [22] which, within our context, only requires a few evaluations of the gradient of the sampled likelihood and trivial Jacobian calculations at each iteration.
Augmented Neural ODEs
Emilien Dupont, Arnaud Doucet, Yee Whye Teh
Asynchronous Anytime Sequential Monte Carlo
Brooks Paige, Frank Wood, Arnaud Doucet, Yee Whye Teh
We introduce a new sequential Monte Carlo algorithm we call the particle cascade. The particle cascade is an asynchronous, anytime alternative to traditional sequential Monte Carlo algorithms that is amenable to parallel and distributed implementations. It uses no barrier synchronizations which leads to improved particle throughput and memory efficiency. It is an anytime algorithm in the sense that it can be run forever to emit an unbounded number of particles while keeping within a fixed memory budget. We prove that the particle cascade provides an unbiased marginal likelihood estimator which can be straightforwardly plugged into existing pseudo-marginal methods.
Augmented Neural ODEs
Emilien Dupont, Arnaud Doucet, Yee Whye Teh
We show that Neural Ordinary Differential Equations (ODEs) learn representations that preserve the topology of the input space and prove that this implies the existence of functions Neural ODEs cannot represent. To address these limitations, we introduce Augmented Neural ODEs which, in addition to being more expressive models, are empirically more stable, generalize better and have a lower computational cost than Neural ODEs.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.