Goto

Collaborating Authors

 Aribandi, Vamsi


Characterization of Time-variant and Time-invariant Assessment of Suicidality on Reddit using C-SSRS

arXiv.org Artificial Intelligence

Suicide is the 10th leading cause of death in the U.S (1999-2019). However, predicting when someone will attempt suicide has been nearly impossible. In the modern world, many individuals suffering from mental illness seek emotional support and advice on well-known and easily-accessible social media platforms such as Reddit. While prior artificial intelligence research has demonstrated the ability to extract valuable information from social media on suicidal thoughts and behaviors, these efforts have not considered both severity and temporality of risk. The insights made possible by access to such data have enormous clinical potential - most dramatically envisioned as a trigger to employ timely and targeted interventions (i.e., voluntary and involuntary psychiatric hospitalization) to save lives. In this work, we address this knowledge gap by developing deep learning algorithms to assess suicide risk in terms of severity and temporality from Reddit data based on the Columbia Suicide Severity Rating Scale (C-SSRS). In particular, we employ two deep learning approaches: time-variant and time-invariant modeling, for user-level suicide risk assessment, and evaluate their performance against a clinician-adjudicated gold standard Reddit corpus annotated based on the C-SSRS. Our results suggest that the time-variant approach outperforms the time-invariant method in the assessment of suicide-related ideations and supportive behaviors (AUC:0.78), while the time-invariant model performed better in predicting suicide-related behaviors and suicide attempt (AUC:0.64). The proposed approach can be integrated with clinical diagnostic interviews for improving suicide risk assessments.


OmniNet: Omnidirectional Representations from Transformers

arXiv.org Artificial Intelligence

This paper proposes Omnidirectional Representations from Transformers (OmniNet). In OmniNet, instead of maintaining a strictly horizontal receptive field, each token is allowed to attend to all tokens in the entire network. This process can also be interpreted as a form of extreme or intensive attention mechanism that has the receptive field of the entire width and depth of the network. To this end, the omnidirectional attention is learned via a meta-learner, which is essentially another self-attention based model. In order to mitigate the computationally expensive costs of full receptive field attention, we leverage efficient self-attention models such as kernel-based (Choromanski et al.), low-rank attention (Wang et al.) and/or Big Bird (Zaheer et al.) as the meta-learner. Extensive experiments are conducted on autoregressive language modeling (LM1B, C4), Machine Translation, Long Range Arena (LRA), and Image Recognition. The experiments show that OmniNet achieves considerable improvements across these tasks, including achieving state-of-the-art performance on LM1B, WMT'14 En-De/En-Fr, and Long Range Arena. Moreover, using omnidirectional representation in Vision Transformers leads to significant improvements on image recognition tasks on both few-shot learning and fine-tuning setups.