Ardavan Saeedi
Priors over Recurrent Continuous Time Processes
Ardavan Saeedi, Alexandre Bouchard-côté
We introduce the Gamma-Exponential Process (GEP), a prior over a large family of continuous time stochastic processes. A hierarchical version of this prior (HGEP; the Hierarchical GEP) yields a useful model for analyzing complex time series. Models based on HGEPs display many attractive properties: conjugacy, exchangeability and closed-form predictive distribution for the waiting times, and exact Gibbs updates for the time scale parameters. After establishing these properties, we show how posterior inference can be carried efficiently using Particle MCMC methods [1]. This yields a MCMC algorithm that can resample entire sequences atomically while avoiding the complications of introducing slice and stick auxiliary variables of the beam sampler [2]. We applied our model to the problem of estimating the disease progression in multiple sclerosis [3], and to RNA evolutionary modeling [4]. In both domains, we found that our model outperformed the standard rate matrix estimation approach.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, Josh Tenenbaum
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. One of the key difficulties is insufficient exploration, resulting in an agent being unable to learn robust policies. Intrinsically motivated agents can explore new behavior for their own sake rather than to directly solve external goals. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical action-value functions, operating at different temporal scales, with goal-driven intrinsically motivated deep reinforcement learning. A top-level q-value function learns a policy over intrinsic goals, while a lower-level function learns a policy over atomic actions to satisfy the given goals.