Goto

Collaborating Authors

 Archambeau, Cédric


Hyperparameter Optimization in Machine Learning

arXiv.org Machine Learning

Hyperparameters are configuration variables controlling the behavior of machine learning algorithms. They are ubiquitous in machine learning and artificial intelligence and the choice of their values determine the effectiveness of systems based on these technologies. Manual hyperparameter search is often unsatisfactory and becomes unfeasible when the number of hyperparameters is large. Automating the search is an important step towards automating machine learning, freeing researchers and practitioners alike from the burden of finding a good set of hyperparameters by trial and error. In this survey, we present a unified treatment of hyperparameter optimization, providing the reader with examples and insights into the state-of-the-art. We cover the main families of techniques to automate hyperparameter search, often referred to as hyperparameter optimization or tuning, including random and quasi-random search, bandit-, model- and gradient- based approaches. We further discuss extensions, including online, constrained, and multi-objective formulations, touch upon connections with other fields such as meta-learning and neural architecture search, and conclude with open questions and future research directions.


Explaining Probabilistic Models with Distributional Values

arXiv.org Artificial Intelligence

A large branch of explainable machine learning is grounded in cooperative game theory. However, research indicates that game-theoretic explanations may mislead or be hard to interpret. We argue that often there is a critical mismatch between what one wishes to explain (e.g. the output of a classifier) and what current methods such as SHAP explain (e.g. the scalar probability of a class). This paper addresses such gap for probabilistic models by generalising cooperative games and value operators. We introduce the distributional values, random variables that track changes in the model output (e.g. flipping of the predicted class) and derive their analytic expressions for games with Gaussian, Bernoulli and Categorical payoffs. We further establish several characterising properties, and show that our framework provides fine-grained and insightful explanations with case studies on vision and language models.


Geographical Erasure in Language Generation

arXiv.org Artificial Intelligence

Large language models (LLMs) encode vast amounts of world knowledge. However, since these models are trained on large swaths of internet data, they are at risk of inordinately capturing information about dominant groups. This imbalance can propagate into generated language. In this work, we study and operationalise a form of geographical erasure, wherein language models underpredict certain countries. We demonstrate consistent instances of erasure across a range of LLMs. We discover that erasure strongly correlates with low frequencies of country mentions in the training corpus. Lastly, we mitigate erasure by finetuning using a custom objective.


PASHA: Efficient HPO and NAS with Progressive Resource Allocation

arXiv.org Artificial Intelligence

Hyperparameter optimization (HPO) and neural architecture search (NAS) are methods of choice to obtain the best-in-class machine learning models, but in practice they can be costly to run. When models are trained on large datasets, tuning them with HPO or NAS rapidly becomes prohibitively expensive for practitioners, even when efficient multi-fidelity methods are employed. We propose an approach to tackle the challenge of tuning machine learning models trained on large datasets with limited computational resources. Our approach, named PASHA, extends ASHA and is able to dynamically allocate maximum resources for the tuning procedure depending on the need. The experimental comparison shows that PASHA identifies well-performing hyperparameter configurations and architectures while consuming significantly fewer computational resources than ASHA. Hyperparameter optimization (HPO) and neural architecture search (NAS) yield state-of-the-art models, but often are a very costly endeavor, especially when working with large datasets and models. For example, using the results of (Sharir et al., 2020) we can estimate that evaluating 50 configurations for a 340-million-parameter BERT model (Devlin et al., 2019) on the 15GB Wikipedia and Book corpora would cost around $500,000. To make HPO and NAS more efficient, researchers explored how we can learn from cheaper evaluations (e.g. on a subset of the data) to later allocate more resources only to promising configurations. This created a family of methods often described as multifidelity methods. Two well-known algorithms in this family are Successive Halving (SH) (Jamieson & Talwalkar, 2016; Karnin et al., 2013) and Hyperband (HB) (Li et al., 2018). Multi-fidelity methods significantly lower the cost of the tuning. Li et al. (2018) reported speedups up to 30x compared to standard Bayesian Optimization (BO) and up to 70x compared to random search. Unfortunately, the cost of current multi-fidelity methods is still too high for many practitioners, also because of the large datasets used for training the models.


A resource-efficient method for repeated HPO and NAS problems

arXiv.org Artificial Intelligence

In this work we consider the problem of repeated hyperparameter and neural architecture search (HNAS).We propose an extension of Successive Halving that is able to leverage information gained in previous HNAS problems with the goal of saving computational resources. We empirically demonstrate that our solution is able to drastically decrease costs while maintaining accuracy and being robust to negative transfer. Our method is significantly simpler than competing transfer learning approaches, setting a new baseline for transfer learning in HNAS. Creating predictive models requires data scientists to delve into data sources, understand and visualize the raw data, apply multiple data transformations and pick a target metric. Searching deep learning architecture and optimization the hyperparameters are often left as a manual step to be performed "from time to time" in practice. However, best practice dictates that reusing historical architectures and hyperparameters under different experimental conditions can negatively impact the predictive performance.


Hyperparameter Transfer Learning with Adaptive Complexity

arXiv.org Machine Learning

Bayesian optimization (BO) is a sample efficient approach to automatically tune the hyperparameters of machine learning models. In practice, one frequently has to solve similar hyperparameter tuning problems sequentially. For example, one might have to tune a type of neural network learned across a series of different classification problems. Recent work on multi-task BO exploits knowledge gained from previous tuning tasks to speed up a new tuning task. However, previous approaches do not account for the fact that BO is a sequential decision making procedure. Hence, there is in general a mismatch between the number of evaluations collected in the current tuning task compared to the number of evaluations accumulated in all previously completed tasks. In this work, we enable multi-task BO to compensate for this mismatch, such that the transfer learning procedure is able to handle different data regimes in a principled way. We propose a new multi-task BO method that learns a set of ordered, non-linear basis functions of increasing complexity via nested drop-out and automatic relevance determination. Experiments on a variety of hyperparameter tuning problems show that our method improves the sample ef


Amazon SageMaker Automatic Model Tuning: Scalable Black-box Optimization

arXiv.org Machine Learning

Tuning complex machine learning systems is challenging. Machine learning models typically expose a set of hyperparameters, be it regularization, architecture, or optimization parameters, whose careful tuning is critical to achieve good performance. To democratize access to such systems, it is essential to automate this tuning process. This paper presents Amazon SageMaker Automatic Model Tuning (AMT), a fully managed system for black-box optimization at scale. AMT finds the best version of a machine learning model by repeatedly training it with different hyperparameter configurations. It leverages either random search or Bayesian optimization to choose the hyperparameter values resulting in the best-performing model, as measured by the metric chosen by the user. AMT can be used with built-in algorithms, custom algorithms, and Amazon SageMaker pre-built containers for machine learning frameworks. We discuss the core functionality, system architecture and our design principles. We also describe some more advanced features provided by AMT, such as automated early stopping and warm-starting, demonstrating their benefits in experiments.


Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization

arXiv.org Machine Learning

Bayesian optimization (BO) is a popular method to optimize expensive black-box functions. It efficiently tunes machine learning algorithms under the implicit assumption that hyperparameter evaluations cost approximately the same. In reality, the cost of evaluating different hyperparameters, be it in terms of time, dollars or energy, can span several orders of magnitude of difference. While a number of heuristics have been proposed to make BO cost-aware, none of these have been proven to work robustly. In this work, we reformulate cost-aware BO in terms of Pareto efficiency and introduce the cost Pareto Front, a mathematical object allowing us to highlight the shortcomings of commonly used acquisition functions. Based on this, we propose a novel Pareto-efficient adaptation of the expected improvement. On 144 real-world black-box function optimization problems we show that our Pareto-efficient acquisition functions significantly outperform previous solutions, bringing up to 50% speed-ups while providing finer control over the cost-accuracy trade-off. We also revisit the common choice of Gaussian process cost models, showing that simple, low-variance cost models predict training times effectively.


Fair Bayesian Optimization

arXiv.org Machine Learning

Given the increasing importance of machine learning (ML) in our lives, algorithmic fairness techniques have been proposed to mitigate biases that can be amplified by ML. Commonly, these specialized techniques apply to a single family of ML models and a specific definition of fairness, limiting their effectiveness in practice. We introduce a general constrained Bayesian optimization (BO) framework to optimize the performance of any ML model while enforcing one or multiple fairness constraints. BO is a global optimization method that has been successfully applied to automatically tune the hyperparameters of ML models. We apply BO with fairness constraints to a range of popular models, including random forests, gradient boosting, and neural networks, showing that we can obtain accurate and fair solutions by acting solely on the hyperparameters. We also show empirically that our approach is competitive with specialized techniques that explicitly enforce fairness constraints during training, and outperforms preprocessing methods that learn unbiased representations of the input data. Moreover, our method can be used in synergy with such specialized fairness techniques to tune their hyperparameters. Finally, we study the relationship between hyperparameters and fairness of the generated model. We observe a correlation between regularization and unbiased models, explaining why acting on the hyperparameters leads to ML models that generalize well and are fair.


Sparse probabilistic projections

Neural Information Processing Systems

We present a generative model for performing sparse probabilistic projections, which includes sparse principal component analysis and sparse canonical correlation analysis as special cases. Sparsity is enforced by means of automatic relevance determination or by imposing appropriate prior distributions, such as generalised hyperbolic distributions. We derive a variational Expectation-Maximisation algorithm for the estimation of the hyperparameters and show that our novel probabilistic approach compares favourably to existing techniques. We illustrate how the proposed method can be applied in the context of cryptoanalysis as a pre-processing tool for the construction of template attacks. Papers published at the Neural Information Processing Systems Conference.