Araki, Jun
PreMind: Multi-Agent Video Understanding for Advanced Indexing of Presentation-style Videos
Wei, Kangda, Zhou, Zhengyu, Wang, Bingqing, Araki, Jun, Lange, Lukas, Huang, Ruihong, Feng, Zhe
In recent years, online lecture videos have become an increasingly popular resource for acquiring new knowledge. Systems capable of effectively understanding/indexing lecture videos are thus highly desirable, enabling downstream tasks like question answering to help users efficiently locate specific information within videos. This work proposes PreMind, a novel multi-agent multimodal framework that leverages various large models for advanced understanding/indexing of presentation-style videos. PreMind first segments videos into slide-presentation segments using a Vision-Language Model (VLM) to enhance modern shot-detection techniques. Each segment is then analyzed to generate multimodal indexes through three key steps: (1) extracting slide visual content, (2) transcribing speech narratives, and (3) consolidating these visual and speech contents into an integrated understanding. Three innovative mechanisms are also proposed to improve performance: leveraging prior lecture knowledge to refine visual understanding, detecting/correcting speech transcription errors using a VLM, and utilizing a critic agent for dynamic iterative self-reflection in vision analysis. Compared to traditional video indexing methods, PreMind captures rich, reliable multimodal information, allowing users to search for details like abbreviations shown only on slides. Systematic evaluations on the public LPM dataset and an internal enterprise dataset are conducted to validate PreMind's effectiveness, supported by detailed analyses.
DelucionQA: Detecting Hallucinations in Domain-specific Question Answering
Sadat, Mobashir, Zhou, Zhengyu, Lange, Lukas, Araki, Jun, Gundroo, Arsalan, Wang, Bingqing, Menon, Rakesh R, Parvez, Md Rizwan, Feng, Zhe
Hallucination is a well-known phenomenon in text generated by large language models (LLMs). The existence of hallucinatory responses is found in almost all application scenarios e.g., summarization, question-answering (QA) etc. For applications requiring high reliability (e.g., customer-facing assistants), the potential existence of hallucination in LLM-generated text is a critical problem. The amount of hallucination can be reduced by leveraging information retrieval to provide relevant background information to the LLM. However, LLMs can still generate hallucinatory content for various reasons (e.g., prioritizing its parametric knowledge over the context, failure to capture the relevant information from the context, etc.). Detecting hallucinations through automated methods is thus paramount. To facilitate research in this direction, we introduce a sophisticated dataset, DelucionQA, that captures hallucinations made by retrieval-augmented LLMs for a domain-specific QA task. Furthermore, we propose a set of hallucination detection methods to serve as baselines for future works from the research community. Analysis and case study are also provided to share valuable insights on hallucination phenomena in the target scenario.
Knowledge-grounded Natural Language Recommendation Explanation
Colas, Anthony, Araki, Jun, Zhou, Zhengyu, Wang, Bingqing, Feng, Zhe
Explanations accompanied by a recommendation can assist users in understanding the decision made by recommendation systems, which in turn increases a user's confidence and trust in the system. Recently, research has focused on generating natural language explanations in a human-readable format. Thus far, the proposed approaches leverage item reviews written by users, which are often subjective, sparse in language, and unable to account for new items that have not been purchased or reviewed before. Instead, we aim to generate fact-grounded recommendation explanations that are objectively described with item features while implicitly considering a user's preferences, based on the user's purchase history. To achieve this, we propose a knowledge graph (KG) approach to natural language explainable recommendation. Our approach draws on user-item features through a novel collaborative filtering-based KG representation to produce fact-grounded, personalized explanations, while jointly learning user-item representations for recommendation scoring. Experimental results show that our approach consistently outperforms previous state-of-the-art models on natural language explainable recommendation.
SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Classification in Low-Resource Domains
Goswami, Koustava, Lange, Lukas, Araki, Jun, Adel, Heike
Prompting pre-trained language models leads to promising results across natural language processing tasks but is less effective when applied in low-resource domains, due to the domain gap between the pre-training data and the downstream task. In this work, we bridge this gap with a novel and lightweight prompting methodology called SwitchPrompt for the adaptation of language models trained on datasets from the general domain to diverse low-resource domains. Using domain-specific keywords with a trainable gated prompt, SwitchPrompt offers domain-oriented prompting, that is, effective guidance on the target domains for general-domain language models. Our few-shot experiments on three text classification benchmarks demonstrate the efficacy of the general-domain pre-trained language models when used with SwitchPrompt. They often even outperform their domain-specific counterparts trained with baseline state-of-the-art prompting methods by up to 10.7% performance increase in accuracy. This result indicates that SwitchPrompt effectively reduces the need for domain-specific language model pre-training.
Retrieval as Attention: End-to-end Learning of Retrieval and Reading within a Single Transformer
Jiang, Zhengbao, Gao, Luyu, Araki, Jun, Ding, Haibo, Wang, Zhiruo, Callan, Jamie, Neubig, Graham
Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt.