Goto

Collaborating Authors

 Ao, Yulong


Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data

arXiv.org Artificial Intelligence

Recently, Vision-Language Models (VLMs) have achieved remarkable progress in multimodal tasks, and multimodal instruction data serves as the foundation for enhancing VLM capabilities. Despite the availability of several open-source multimodal datasets, limitations in the scale and quality of open-source instruction data hinder the performance of VLMs trained on these datasets, leading to a significant gap compared to models trained on closed-source data. To address this challenge, we introduce Infinity-MM, a large-scale multimodal instruction dataset. We collected the available multimodal instruction datasets and performed unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy. Furthermore, to enable large-scale expansion of instruction data and support the continuous acquisition of high-quality data, we propose a synthetic instruction generation method based on a tagging system and open-source VLMs. By establishing correspondences between different types of images and associated instruction types, this method can provide essential guidance during data synthesis. Leveraging this high-quality data, we have trained a 2-billion-parameter Vision-Language Model, Aquila-VL-2B, which achieves state-of-the-art (SOTA) performance among models of similar scale. The data is available at: https://huggingface.co/datasets/BAAI/Infinity-MM.


End-to-end Adaptive Distributed Training on PaddlePaddle

arXiv.org Artificial Intelligence

Distributed training has become a pervasive and effective approach for training a large neural network (NN) model with processing massive data. However, it is very challenging to satisfy requirements from various NN models, diverse computing resources, and their dynamic changes during a training job. In this study, we design our distributed training framework in a systematic end-to-end view to provide the built-in adaptive ability for different scenarios, especially for industrial applications and production environments, by fully considering resource allocation, model partition, task placement, and distributed execution. Based on the unified distributed graph and the unified cluster object, our adaptive framework is equipped with a global cost model and a global planner, which can enable arbitrary parallelism, resource-aware placement, multi-mode execution, fault-tolerant, and elastic distributed training. The experiments demonstrate that our framework can satisfy various requirements from the diversity of applications and the heterogeneity of resources with highly competitive performance. The ERNIE language model with 260 billion parameters is efficiently trained on thousands of AI processors with 91.7% weak scalability. The throughput of the model from the recommender system by employing the heterogeneous pipeline asynchronous execution can be increased up to 2.1 times and 3.3 times that of the GPU-only and CPU-only training respectively. Moreover, the fault-tolerant and elastic distributed training have been successfully applied to the online industrial applications, which give a reduction of 34.49% in the number of failed long-term training jobs and an increase of 33.91% for the global scheduling efficiency in the production environment.