Anwar, Ali
Towards cost-effective and resource-aware aggregation at Edge for Federated Learning
Khan, Ahmad Faraz, Li, Yuze, Wang, Xinran, Haroon, Sabaat, Ali, Haider, Cheng, Yue, Butt, Ali R., Anwar, Ali
Federated Learning (FL) is a machine learning approach that addresses privacy and data transfer costs by computing data at the source. It's particularly popular for Edge and IoT applications where the aggregator server of FL is in resource-capped edge data centers for reducing communication costs. Existing cloud-based aggregator solutions are resource-inefficient and expensive at the Edge, leading to low scalability and high latency. To address these challenges, this study compares prior and new aggregation methodologies under the changing demands of IoT and Edge applications. This work is the first to propose an adaptive FL aggregator at the Edge, enabling users to manage the cost and efficiency trade-off. An extensive comparative analysis demonstrates that the design improves scalability by up to 4X, time efficiency by 8X, and reduces costs by more than 2X compared to extant cloud-based static methodologies.
ProvFL: Client-Driven Interpretability of Global Model Predictions in Federated Learning
Gill, Waris, Anwar, Ali, Gulzar, Muhammad Ali
Federated Learning (FL) trains a collaborative machine learning model by aggregating multiple privately trained clients' models over several training rounds. Such a long, continuous action of model aggregations poses significant challenges in reasoning about the origin and composition of such a global model. Regardless of the quality of the global model or if it has a fault, understanding the model's origin is equally important for debugging, interpretability, and explainability in federated learning. FL application developers often question: (1) what clients contributed towards a global model and (2) if a global model predicts a label, which clients are responsible for it? We introduce, neuron provenance, a fine-grained lineage capturing mechanism that tracks the flow of information between the individual participating clients in FL and the final global model. We operationalize this concept in ProvFL that functions on two key principles. First, recognizing that monitoring every neuron of every client's model statically is ineffective and noisy due to the uninterpretable nature of individual neurons, ProvFL dynamically isolates influential and sensitive neurons in the global model, significantly reducing the search space. Second, as multiple clients' models are fused in each round to form a global model, tracking each client's contribution becomes challenging. ProvFL leverages the invertible nature of fusion algorithms to precisely isolate each client's contribution derived from selected neurons. When asked to localize the clients responsible for the given behavior (i.e., prediction) of the global model, ProvFL successfully localizes them with an average provenance accuracy of 97%. Additionally, ProvFL outperforms the state-of-the-art FL fault localization approach by an average margin of 50%.
Autonomous Port Navigation With Ranging Sensors Using Model-Based Reinforcement Learning
Herremans, Siemen, Anwar, Ali, Troch, Arne, Ravijts, Ian, Vangeneugden, Maarten, Mercelis, Siegfried, Hellinckx, Peter
Autonomous shipping has recently gained much interest in the research community. However, little research focuses on inland - and port navigation, even though this is identified by countries such as Belgium and the Netherlands as an essential step towards a sustainable future. These environments pose unique challenges, since they can contain dynamic obstacles that do not broadcast their location, such as small vessels, kayaks or buoys. Therefore, this research proposes a navigational algorithm which can navigate an inland vessel in a wide variety of complex port scenarios using ranging sensors to observe the environment. The proposed methodology is based on a machine learning approach that has recently set benchmark results in various domains: model-based reinforcement learning. By randomizing the port environments during training, the trained model can navigate in scenarios that it never encountered during training. Furthermore, results show that our approach outperforms the commonly used dynamic window approach and a benchmark model-free reinforcement learning algorithm. This work is therefore a significant step towards vessels that can navigate autonomously in complex port scenarios.
Safety Aware Autonomous Path Planning Using Model Predictive Reinforcement Learning for Inland Waterways
Vanneste, Astrid, Vanneste, Simon, Vasseur, Olivier, Janssens, Robin, Billast, Mattias, Anwar, Ali, Mets, Kevin, De Schepper, Tom, Mercelis, Siegfried, Hellinckx, Peter
In recent years, interest in autonomous shipping in urban waterways has increased significantly due to the trend of keeping cars and trucks out of city centers. Classical approaches such as Frenet frame based planning and potential field navigation often require tuning of many configuration parameters and sometimes even require a different configuration depending on the situation. In this paper, we propose a novel path planning approach based on reinforcement learning called Model Predictive Reinforcement Learning (MPRL). MPRL calculates a series of waypoints for the vessel to follow. The environment is represented as an occupancy grid map, allowing us to deal with any shape of waterway and any number and shape of obstacles. We demonstrate our approach on two scenarios and compare the resulting path with path planning using a Frenet frame and path planning based on a proximal policy optimization (PPO) agent. Our results show that MPRL outperforms both baselines in both test scenarios. The PPO based approach was not able to reach the goal in either scenario while the Frenet frame approach failed in the scenario consisting of a corner with obstacles. MPRL was able to safely (collision free) navigate to the goal in both of the test scenarios.
FedDefender: Backdoor Attack Defense in Federated Learning
Gill, Waris, Anwar, Ali, Gulzar, Muhammad Ali
Federated Learning (FL) is a privacy-preserving distributed machine learning technique that enables individual clients (e.g., user participants, edge devices, or organizations) to train a model on their local data in a secure environment and then share the trained model with an aggregator to build a global model collaboratively. In this work, we propose FedDefender, a defense mechanism against targeted poisoning attacks in FL by leveraging differential testing. Our proposed method fingerprints the neuron activations of clients' models on the same input and uses differential testing to identify a potentially malicious client containing a backdoor. We evaluate FedDefender using MNIST and FashionMNIST datasets with 20 and 30 clients, and our results demonstrate that FedDefender effectively mitigates such attacks, reducing the attack success rate (ASR) to 10\% without deteriorating the global model performance.
A Framework for Incentivized Collaborative Learning
Wang, Xinran, Le, Qi, Khan, Ahmad Faraz, Ding, Jie, Anwar, Ali
Collaborations among various entities, such as companies, research labs, AI agents, and edge devices, have become increasingly crucial for achieving machine learning tasks that cannot be accomplished by a single entity alone. This is likely due to factors such as security constraints, privacy concerns, and limitations in computation resources. As a result, collaborative learning (CL) research has been gaining momentum. However, a significant challenge in practical applications of CL is how to effectively incentivize multiple entities to collaborate before any collaboration occurs. In this study, we propose ICL, a general framework for incentivized collaborative learning, and provide insights into the critical issue of when and why incentives can improve collaboration performance. Furthermore, we show the broad applicability of ICL to specific cases in federated learning, assisted learning, and multi-armed bandit with both theory and experimental results.
Attention Based Feature Fusion For Multi-Agent Collaborative Perception
Ahmed, Ahmed N., Mercelis, Siegfried, Anwar, Ali
In the domain of intelligent transportation systems (ITS), collaborative perception has emerged as a promising approach to overcome the limitations of individual perception by enabling multiple agents to exchange information, thus enhancing their situational awareness. Collaborative perception overcomes the limitations of individual sensors, allowing connected agents to perceive environments beyond their line-of-sight and field of view. However, the reliability of collaborative perception heavily depends on the data aggregation strategy and communication bandwidth, which must overcome the challenges posed by limited network resources. To improve the precision of object detection and alleviate limited network resources, we propose an intermediate collaborative perception solution in the form of a graph attention network (GAT). The proposed approach develops an attention-based aggregation strategy to fuse intermediate representations exchanged among multiple connected agents. This approach adaptively highlights important regions in the intermediate feature maps at both the channel and spatial levels, resulting in improved object detection precision. We propose a feature fusion scheme using attention-based architectures and evaluate the results quantitatively in comparison to other state-of-the-art collaborative perception approaches. Our proposed approach is validated using the V2XSim dataset. The results of this work demonstrate the efficacy of the proposed approach for intermediate collaborative perception in improving object detection average precision while reducing network resource usage.
PI-FL: Personalized and Incentivized Federated Learning
Khan, Ahmad Faraz, Wang, Xinran, Le, Qi, Khan, Azal Ahmad, Ali, Haider, Ding, Jie, Butt, Ali, Anwar, Ali
Personalized FL has been widely used to cater to heterogeneity challenges with non-IID data. A primary obstacle is considering the personalization process from the client's perspective to preserve their autonomy. Allowing the clients to participate in personalized FL decisions becomes significant due to privacy and security concerns, where the clients may not be at liberty to share private information necessary for producing good quality personalized models. Moreover, clients with high-quality data and resources are reluctant to participate in the FL process without reasonable incentive. In this paper, we propose PI-FL, a one-shot personalization solution complemented by a token-based incentive mechanism that rewards personalized training. PI-FL outperforms other state-of-the-art approaches and can generate good-quality personalized models while respecting clients' privacy.
The Second Monocular Depth Estimation Challenge
Spencer, Jaime, Qian, C. Stella, Trescakova, Michaela, Russell, Chris, Hadfield, Simon, Graf, Erich W., Adams, Wendy J., Schofield, Andrew J., Elder, James, Bowden, Richard, Anwar, Ali, Chen, Hao, Chen, Xiaozhi, Cheng, Kai, Dai, Yuchao, Hoa, Huynh Thai, Hossain, Sadat, Huang, Jianmian, Jing, Mohan, Li, Bo, Li, Chao, Li, Baojun, Liu, Zhiwen, Mattoccia, Stefano, Mercelis, Siegfried, Nam, Myungwoo, Poggi, Matteo, Qi, Xiaohua, Ren, Jiahui, Tang, Yang, Tosi, Fabio, Trinh, Linh, Uddin, S. M. Nadim, Umair, Khan Muhammad, Wang, Kaixuan, Wang, Yufei, Wang, Yixing, Xiang, Mochu, Xu, Guangkai, Yin, Wei, Yu, Jun, Zhang, Qi, Zhao, Chaoqiang
This paper discusses the results for the second edition of the Monocular Depth Estimation Challenge (MDEC). This edition was open to methods using any form of supervision, including fully-supervised, self-supervised, multi-task or proxy depth. The challenge was based around the SYNS-Patches dataset, which features a wide diversity of environments with high-quality dense ground-truth. This includes complex natural environments, e.g. forests or fields, which are greatly underrepresented in current benchmarks. The challenge received eight unique submissions that outperformed the provided SotA baseline on any of the pointcloud- or image-based metrics. The top supervised submission improved relative F-Score by 27.62%, while the top self-supervised improved it by 16.61%. Supervised submissions generally leveraged large collections of datasets to improve data diversity. Self-supervised submissions instead updated the network architecture and pretrained backbones. These results represent a significant progress in the field, while highlighting avenues for future research, such as reducing interpolation artifacts at depth boundaries, improving self-supervised indoor performance and overall natural image accuracy.
Heterogeneous Federated Learning using Dynamic Model Pruning and Adaptive Gradient
Yu, Sixing, Nguyen, Phuong, Anwar, Ali, Jannesari, Ali
Federated Learning (FL) has emerged as a new paradigm for training machine learning models distributively without sacrificing data security and privacy. Learning models on edge devices such as mobile phones is one of the most common use cases for FL. However, Non-identical independent distributed~(non-IID) data in edge devices easily leads to training failures. Especially, over-parameterized machine learning models can easily be over-fitted on such data, hence, resulting in inefficient federated learning and poor model performance. To overcome the over-fitting issue, we proposed an adaptive dynamic pruning approach for FL, which can dynamically slim the model by dropping out unimportant parameters, hence, preventing over-fittings. Since the machine learning model's parameters react differently for different training samples, adaptive dynamic pruning will evaluate the salience of the model's parameter according to the input training sample, and only retain the salient parameter's gradients when doing back-propagation. We performed comprehensive experiments to evaluate our approach. The results show that our approach by removing the redundant parameters in neural networks can significantly reduce the over-fitting issue and greatly improves the training efficiency. In particular, when training the ResNet-32 on CIFAR-10, our approach reduces the communication cost by 57\%. We further demonstrate the inference acceleration capability of the proposed algorithm. Our approach reduces up to 50\% FLOPs inference of DNNs on edge devices while maintaining the model's quality.