Anwar, Adnan
Digital Emotion Regulation on Social Media
Verma, Akriti, Islam, Shama, Moghaddam, Valeh, Anwar, Adnan
Emotion regulation is the process of consciously altering one's affective state, that is the underlying emotional state such as happiness, confidence, guilt, anger etc. The ability to effectively regulate emotions is necessary for functioning efficiently in everyday life. Today, the pervasiveness of digital technology is being purposefully employed to modify our affective states, a process known as digital emotion regulation. Understanding digital emotion regulation can help support the rise of ethical technology design, development, and deployment. This article presents an overview of digital emotion regulation in social media applications, as well as a synthesis of recent research on emotion regulation interventions for social media. We share our findings from analysing state-of-the-art literature on how different social media applications are utilised at different stages in the process of emotion regulation.
FedDiSC: A Computation-efficient Federated Learning Framework for Power Systems Disturbance and Cyber Attack Discrimination
Husnoo, Muhammad Akbar, Anwar, Adnan, Reda, Haftu Tasew, Hosseinzadeh, Nasser, Islam, Shama Naz, Mahmood, Abdun Naser, Doss, Robin
With the growing concern about the security and privacy of smart grid systems, cyberattacks on critical power grid components, such as state estimation, have proven to be one of the top-priority cyber-related issues and have received significant attention in recent years. However, cyberattack detection in smart grids now faces new challenges, including privacy preservation and decentralized power zones with strategic data owners. To address these technical bottlenecks, this paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC, that enables Discrimination between power System disturbances and Cyberattacks. Specifically, we first propose a Federated Learning approach to enable Supervisory Control and Data Acquisition subsystems of decentralized power grid zones to collaboratively train an attack detection model without sharing sensitive power related data. Secondly, we put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies. Lastly, to adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD to improve its communication efficiency. Extensive simulations of the proposed framework on publicly available Industrial Control Systems datasets demonstrate that the proposed framework can achieve superior detection accuracy while preserving the privacy of sensitive power grid related information. Furthermore, we find that the gradient quantization scheme utilized improves communication efficiency by 40% when compared to a traditional federated learning approach without gradient quantization which suggests suitability in a real-world scenario.
FeDiSa: A Semi-asynchronous Federated Learning Framework for Power System Fault and Cyberattack Discrimination
Husnoo, Muhammad Akbar, Anwar, Adnan, Reda, Haftu Tasew, Hosseizadeh, Nasser, Islam, Shama Naz, Mahmood, Abdun Naser, Doss, Robin
With growing security and privacy concerns in the Smart Grid domain, intrusion detection on critical energy infrastructure has become a high priority in recent years. To remedy the challenges of privacy preservation and decentralized power zones with strategic data owners, Federated Learning (FL) has contemporarily surfaced as a viable privacy-preserving alternative which enables collaborative training of attack detection models without requiring the sharing of raw data. To address some of the technical challenges associated with conventional synchronous FL, this paper proposes FeDiSa, a novel Semi-asynchronous Federated learning framework for power system faults and cyberattack Discrimination which takes into account communication latency and stragglers. Specifically, we propose a collaborative training of deep auto-encoder by Supervisory Control and Data Acquisition sub-systems which upload their local model updates to a control centre, which then perform a semi-asynchronous model aggregation for a new global model parameters based on a buffer system and a preset cut-off time. Experiments on the proposed framework using publicly available industrial control systems datasets reveal superior attack detection accuracy whilst preserving data confidentiality and minimizing the adverse effects of communication latency and stragglers. Furthermore, we see a 35% improvement in training time, thus validating the robustness of our proposed method.
A Secure Federated Learning Framework for Residential Short Term Load Forecasting
Husnoo, Muhammad Akbar, Anwar, Adnan, Hosseinzadeh, Nasser, Islam, Shama Naz, Mahmood, Abdun Naser, Doss, Robin
Smart meter measurements, though critical for accurate demand forecasting, face several drawbacks including consumers' privacy, data breach issues, to name a few. Recent literature has explored Federated Learning (FL) as a promising privacy-preserving machine learning alternative which enables collaborative learning of a model without exposing private raw data for short term load forecasting. Despite its virtue, standard FL is still vulnerable to an intractable cyber threat known as Byzantine attack carried out by faulty and/or malicious clients. Therefore, to improve the robustness of federated short-term load forecasting against Byzantine threats, we develop a state-of-the-art differentially private secured FL-based framework that ensures the privacy of the individual smart meter's data while protect the security of FL models and architecture. Our proposed framework leverages the idea of gradient quantization through the Sign Stochastic Gradient Descent (SignSGD) algorithm, where the clients only transmit the `sign' of the gradient to the control centre after local model training. As we highlight through our experiments involving benchmark neural networks with a set of Byzantine attack models, our proposed approach mitigates such threats quite effectively and thus outperforms conventional Fed-SGD models.
FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy Providers
Husnoo, Muhammad Akbar, Anwar, Adnan, Hosseinzadeh, Nasser, Islam, Shama Naz, Mahmood, Abdun Naser, Doss, Robin
As Smart Meters are collecting and transmitting household energy consumption data to Retail Energy Providers (REP), the main challenge is to ensure the effective use of fine-grained consumer data while ensuring data privacy. In this manuscript, we tackle this challenge for energy load consumption forecasting in regards to REPs which is essential to energy demand management, load switching and infrastructure development. Specifically, we note that existing energy load forecasting is centralized, which are not scalable and most importantly, vulnerable to data privacy threats. Besides, REPs are individual market participants and liable to ensure the privacy of their own customers. To address this issue, we propose a novel horizontal privacy-preserving federated learning framework for REPs energy load forecasting, namely FedREP. We consider a federated learning system consisting of a control centre and multiple retailers by enabling multiple REPs to build a common, robust machine learning model without sharing data, thus addressing critical issues such as data privacy, data security and scalability. For forecasting, we use a state-of-the-art Long Short-Term Memory (LSTM) neural network due to its ability to learn long term sequences of observations and promises of higher accuracy with time-series data while solving the vanishing gradient problem. Finally, we conduct extensive data-driven experiments using a real energy consumption dataset. Experimental results demonstrate that our proposed federated learning framework can achieve sufficient performance in terms of MSE ranging between 0.3 to 0.4 and is relatively similar to that of a centralized approach while preserving privacy and improving scalability.
A VAE-Bayesian Deep Learning Scheme for Solar Generation Forecasting based on Dimensionality Reduction
Kaur, Devinder, Islam, Shama Naz, Mahmud, Md. Apel, Haque, Md. Enamul, Anwar, Adnan
The advancement of distributed generation technologies in modern power systems has led to a widespread integration of renewable power generation at customer side. However, the intermittent nature of renewable energy poses new challenges to the network operational planning with underlying uncertainties. This paper proposes a novel Bayesian probabilistic technique for forecasting renewable solar generation by addressing data and model uncertainties by integrating bidirectional long short-term memory (BiLSTM) neural networks while compressing the weight parameters using variational autoencoder (VAE). Existing Bayesian deep learning methods suffer from high computational complexities as they require to draw a large number of samples from weight parameters expressed in the form of probability distributions. The proposed method can deal with uncertainty present in model and data in a more computationally efficient manner by reducing the dimensionality of model parameters. The proposed method is evaluated using quantile loss, reconstruction error, and deterministic forecasting evaluation metrics such as root-mean square error. It is inferred from the numerical results that VAE-Bayesian BiLSTM outperforms other probabilistic and deterministic deep learning methods for solar power forecasting in terms of accuracy and computational efficiency for different sizes of the dataset.
False Data Injection Threats in Active Distribution Systems: A Comprehensive Survey
Husnoo, Muhammad Akbar, Anwar, Adnan, Hosseinzadeh, Nasser, Islam, Shama Naz, Mahmood, Abdun Naser, Doss, Robin
With the proliferation of smart devices and revolutions in communications, electrical distribution systems are gradually shifting from passive, manually-operated and inflexible ones, to a massively interconnected cyber-physical smart grid to address the energy challenges of the future. However, the integration of several cutting-edge technologies has introduced several security and privacy vulnerabilities due to the large-scale complexity and resource limitations of deployments. Recent research trends have shown that False Data Injection (FDI) attacks are becoming one of the most malicious cyber threats within the entire smart grid paradigm. Therefore, this paper presents a comprehensive survey of the recent advances in FDI attacks within active distribution systems and proposes a taxonomy to classify the FDI threats with respect to smart grid targets. The related studies are contrasted and summarized in terms of the attack methodologies and implications on the electrical power distribution networks. Finally, we identify some research gaps and recommend a number of future research directions to guide and motivate prospective researchers.
Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks
Mehedi, Sk. Tanzir, Anwar, Adnan, Rahman, Ziaur, Ahmed, Kawsar
The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.
Detecting Autism Spectrum Disorder using Machine Learning
Hossain, Md Delowar, Kabir, Muhammad Ashad, Anwar, Adnan, Islam, Md Zahidul
Autism Spectrum Disorder (ASD), which is a neuro development disorder, is often accompanied by sensory issues such an over sensitivity or under sensitivity to sounds and smells or touch. Although its main cause is genetics in nature, early detection and treatment can help to improve the conditions. In recent years, machine learning based intelligent diagnosis has been evolved to complement the traditional clinical methods which can be time consuming and expensive. The focus of this paper is to find out the most significant traits and automate the diagnosis process using available classification techniques for improved diagnosis purpose. We have analyzed ASD datasets of Toddler, Child, Adolescent and Adult. We determine the best performing classifier for these binary datasets using the evaluation metrics recall, precision, F-measures and classification errors. Our finding shows that Sequential minimal optimization (SMO) based Support Vector Machines (SVM) classifier outperforms all other benchmark machine learning algorithms in terms of accuracy during the detection of ASD cases and produces less classification errors compared to other algorithms. Also, we find that Relief Attributes algorithm is the best to identify the most significant attributes in ASD datasets.