Not enough data to create a plot.
Try a different view from the menu above.
Antonio Torralba
ActionSense: A Multimodal Dataset and Recording Framework for Human Activities Using Wearable Sensors in a Kitchen Environment
Joseph DelPreto, Chao Liu, Yiyue Luo, Michael Foshey, Yunzhu Li, Antonio Torralba, Wojciech Matusik, Daniela Rus
This paper introduces ActionSense, a multimodal dataset and recording framework with an emphasis on wearable sensing in a kitchen environment. It provides rich, synchronized data streams along with ground truth data to facilitate learning pipelines that could extract insights about how humans interact with the physical world during activities of daily living, and help lead to more capable and collaborative robot assistants. The wearable sensing suite captures motion, force, and attention information; it includes eye tracking with a first-person camera, forearm muscle activity sensors, a body-tracking system using 17 inertial sensors, finger-tracking gloves, and custom tactile sensors on the hands that use a matrix of conductive threads. This is coupled with activity labels and with externallycaptured data from multiple RGB cameras, a depth camera, and microphones. The specific tasks recorded in ActionSense are designed to highlight lower-level physical skills and higher-level scene reasoning or action planning. They include simple object manipulations (e.g., stacking plates), dexterous actions (e.g., peeling or cutting vegetables), and complex action sequences (e.g., setting a table or loading a dishwasher).
3D-Aware Scene Manipulation via Inverse Graphics
Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman, Josh Tenenbaum
3D-Aware Scene Manipulation via Inverse Graphics
Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman, Josh Tenenbaum
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, Josh Tenenbaum
We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data-and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.
Skip-Thought Vectors
Ryan Kiros, Yukun Zhu, Russ R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler
We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoderdecoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice.