Goto

Collaborating Authors

 Antonio Torralba




Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding

Neural Information Processing Systems

We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data-and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.



Skip-Thought Vectors

Neural Information Processing Systems

We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoderdecoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice.


Where are they looking?

Neural Information Processing Systems

Humans have the remarkable ability to follow the gaze of other people to identify what they are looking at. Following eye gaze, or gaze-following, is an important ability that allows us to understand what other people are thinking, the actions they are performing, and even predict what they might do next. Despite the importance of this topic, this problem has only been studied in limited scenarios within the computer vision community. In this paper, we propose a deep neural networkbased approach for gaze-following and a new benchmark dataset, GazeFollow, for thorough evaluation. Given an image and the location of a head, our approach follows the gaze of the person and identifies the object being looked at. Our deep network is able to discover how to extract head pose and gaze orientation, and to select objects in the scene that are in the predicted line of sight and likely to be looked at (such as televisions, balls and food). The quantitative evaluation shows that our approach produces reliable results, even when viewing only the back of the head. While our method outperforms several baseline approaches, we are still far from reaching human performance on this task. Overall, we believe that gazefollowing is a challenging and important problem that deserves more attention from the community.



ActionSense: A Multimodal Dataset and Recording Framework for Human Activities Using Wearable Sensors in a Kitchen Environment

Neural Information Processing Systems

This paper introduces ActionSense, a multimodal dataset and recording framework with an emphasis on wearable sensing in a kitchen environment. It provides rich, synchronized data streams along with ground truth data to facilitate learning pipelines that could extract insights about how humans interact with the physical world during activities of daily living, and help lead to more capable and collaborative robot assistants. The wearable sensing suite captures motion, force, and attention information; it includes eye tracking with a first-person camera, forearm muscle activity sensors, a body-tracking system using 17 inertial sensors, finger-tracking gloves, and custom tactile sensors on the hands that use a matrix of conductive threads. This is coupled with activity labels and with externallycaptured data from multiple RGB cameras, a depth camera, and microphones. The specific tasks recorded in ActionSense are designed to highlight lower-level physical skills and higher-level scene reasoning or action planning. They include simple object manipulations (e.g., stacking plates), dexterous actions (e.g., peeling or cutting vegetables), and complex action sequences (e.g., setting a table or loading a dishwasher).


Unsupervised Learning of Spoken Language with Visual Context

Neural Information Processing Systems

Humans learn to speak before they can read or write, so why can't computers do the same? In this paper, we present a deep neural network model capable of rudimentary spoken language acquisition using untranscribed audio training data, whose only supervision comes in the form of contextually relevant visual images. We describe the collection of our data comprised of over 120,000 spoken audio captions for the Places image dataset and evaluate our model on an image search and annotation task. We also provide some visualizations which suggest that our model is learning to recognize meaningful words within the caption spectrograms.


SoundNet: Learning Sound Representations from Unlabeled Video

Neural Information Processing Systems

We learn rich natural sound representations by capitalizing on large amounts of unlabeled sound data collected in the wild. We leverage the natural synchronization between vision and sound to learn an acoustic representation using two-million unlabeled videos. Unlabeled video has the advantage that it can be economically acquired at massive scales, yet contains useful signals about natural sound. We propose a student-teacher training procedure which transfers discriminative visual knowledge from well established visual recognition models into the sound modality using unlabeled video as a bridge. Our sound representation yields significant performance improvements over the state-of-the-art results on standard benchmarks for acoustic scene/object classification. Visualizations suggest some high-level semantics automatically emerge in the sound network, even though it is trained without ground truth labels.