Antol, Stanislaw
AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Monninger, Thomas, Anwar, Md Zafar, Antol, Stanislaw, Staab, Steffen, Ding, Sihao
Autonomous driving requires an understanding of the infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining as straightforward to integrate and as generic as auxiliary supervision. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements in vectorized map prediction performance up to 13.3% over the StreamMapNet baseline on 60m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code will be released soon.
Measuring Machine Intelligence Through Visual Question Answering
Zitnick, C. Lawrence (Facebook AI Research) | Agrawal, Aishwarya (Virginia Institute of Technology) | Antol, Stanislaw (Virginia Institute of Technology) | Mitchell, Margaret (Microsoft Research) | Batra, Dhruv (Virginia Institute of Technology) | Parikh, Devi (Virginia Institute of Technology)
We begin with a case study exploring the recently popular task of image captioning and its limitations as a task for measuring machine intelligence. An alternative and more promising task is Visual Question Answering that tests a machine's ability to reason about language and vision. We describe a dataset unprecedented in size created for the task that contains over 760,000 human generated questions about images. Using around 10 million human generated answers, machines may be easily evaluated.
Measuring Machine Intelligence Through Visual Question Answering
Zitnick, C. Lawrence (Facebook AI Research) | Agrawal, Aishwarya (Virginia Institute of Technology) | Antol, Stanislaw (Virginia Institute of Technology) | Mitchell, Margaret (Microsoft Research) | Batra, Dhruv (Virginia Institute of Technology) | Parikh, Devi (Virginia Institute of Technology)
As machines have become more intelligent, there has been a renewed interest in methods for measuring their intelligence. A common approach is to propose tasks for which a human excels, but one which machines find difficult. However, an ideal task should also be easy to evaluate and not be easily gameable. We begin with a case study exploring the recently popular task of image captioning and its limitations as a task for measuring machine intelligence. An alternative and more promising task is Visual Question Answering that tests a machine’s ability to reason about language and vision. We describe a dataset unprecedented in size created for the task that contains over 760,000 human generated questions about images. Using around 10 million human generated answers, machines may be easily evaluated.