Not enough data to create a plot.
Try a different view from the menu above.
Anil, Rohan
Benchmarking Neural Network Training Algorithms
Dahl, George E., Schneider, Frank, Nado, Zachary, Agarwal, Naman, Sastry, Chandramouli Shama, Hennig, Philipp, Medapati, Sourabh, Eschenhagen, Runa, Kasimbeg, Priya, Suo, Daniel, Bae, Juhan, Gilmer, Justin, Peirson, Abel L., Khan, Bilal, Anil, Rohan, Rabbat, Mike, Krishnan, Shankar, Snider, Daniel, Amid, Ehsan, Chen, Kongtao, Maddison, Chris J., Vasudev, Rakshith, Badura, Michal, Garg, Ankush, Mattson, Peter
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
Knowledge distillation: A good teacher is patient and consistent
Beyer, Lucas, Zhai, Xiaohua, Royer, Amรฉlie, Markeeva, Larisa, Anil, Rohan, Kolesnikov, Alexander
There is a growing discrepancy in computer vision between large-scale models that achieve state-of-the-art performance and models that are affordable in practical applications. In this paper we address this issue and significantly bridge the gap between these two types of models. Throughout our empirical investigation we do not aim to necessarily propose a new method, but strive to identify a robust and effective recipe for making state-of-the-art large scale models affordable in practice. We demonstrate that, when performed correctly, knowledge distillation can be a powerful tool for reducing the size of large models without compromising their performance. In particular, we uncover that there are certain implicit design choices, which may drastically affect the effectiveness of distillation. Our key contribution is the explicit identification of these design choices, which were not previously articulated in the literature. We back up our findings by a comprehensive empirical study, demonstrate compelling results on a wide range of vision datasets and, in particular, obtain a state-of-the-art ResNet-50 model for ImageNet, which achieves 82.8\% top-1 accuracy.
A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes
Nado, Zachary, Gilmer, Justin M., Shallue, Christopher J., Anil, Rohan, Dahl, George E.
Recently the LARS and LAMB optimizers have been proposed for training neural networks faster using large batch sizes. LARS and LAMB add layer-wise normalization to the update rules of Heavy-ball momentum and Adam, respectively, and have become popular in prominent benchmarks and deep learning libraries. However, without fair comparisons to standard optimizers, it remains an open question whether LARS and LAMB have any benefit over traditional, generic algorithms. In this work we demonstrate that standard optimization algorithms such as Nesterov momentum and Adam can match or exceed the results of LARS and LAMB at large batch sizes. Our results establish new, stronger baselines for future comparisons at these batch sizes and shed light on the difficulties of comparing optimizers for neural network training more generally.
Measuring and Harnessing Transference in Multi-Task Learning
Fifty, Christopher, Amid, Ehsan, Zhao, Zhe, Yu, Tianhe, Anil, Rohan, Finn, Chelsea
Multi-task learning can leverage information learned by one task to benefit the training of other tasks. Despite this capacity, naรฏve formulations often degrade performance and in particular, identifying the tasks that would benefit from cotraining remains a challenging design question. In this paper, we analyze the dynamics of information transfer, or transference, across tasks throughout training. Specifically, we develop a similarity measure that can quantify transference among tasks and use this quantity to both better understand the optimization dynamics of multi-task learning as well as improve overall learning performance. In the latter case, we propose two methods to leverage our transference metric. The first operates at a macro-level by selecting which tasks should train together while the second functions at a micro-level by determining how to combine task gradients at each training step. We find these methods can lead to significant improvement over prior work on three supervised multi-task learning benchmarks and one multi-task reinforcement learning paradigm. Deciding if two or more objectives should be trained together in a multi-task model, as well as choosing how that model's parameters should be shared, is an inherently complex issue often left to human experts (Zhang & Yang, 2017). However, a human's understanding of similarity is motivated by their intuition and experience rather than a prescient knowledge of the underlying structures learned by a neural network.
Stochastic Optimization with Laggard Data Pipelines
Agarwal, Naman, Anil, Rohan, Koren, Tomer, Talwar, Kunal, Zhang, Cyril
State-of-the-art optimization is steadily shifting towards massively parallel pipelines with extremely large batch sizes. As a consequence, CPU-bound preprocessing and disk/memory/network operations have emerged as new performance bottlenecks, as opposed to hardware-accelerated gradient computations. In this regime, a recently proposed approach is data echoing (Choi et al., 2019), which takes repeated gradient steps on the same batch while waiting for fresh data to arrive from upstream. We provide the first convergence analyses of "data-echoed" extensions of common optimization methods, showing that they exhibit provable improvements over their synchronous counterparts. Specifically, we show that in convex optimization with stochastic minibatches, data echoing affords speedups on the curvature-dominated part of the convergence rate, while maintaining the optimal statistical rate.
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
Amid, Ehsan, Warmuth, Manfred K., Anil, Rohan, Koren, Tomer
We introduce a temperature into the exponential function and replace the softmax output layer of neural nets by a high temperature generalization. Similarly, the logarithm in the log loss we use for training is replaced by a low temperature logarithm. By tuning the two temperatures we create loss functions that are non-convex already in the single layer case. When replacing the last layer of the neural nets by our two temperature generalization of logistic regression, the training becomes more robust to noise. We visualize the effect of tuning the two temperatures in a simple setting and show the efficacy of our method on large data sets. Our methodology is based on Bregman divergences and is superior to a related two-temperature method using the Tsallis divergence.
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Shen, Jonathan, Nguyen, Patrick, Wu, Yonghui, Chen, Zhifeng, Chen, Mia X., Jia, Ye, Kannan, Anjuli, Sainath, Tara, Cao, Yuan, Chiu, Chung-Cheng, He, Yanzhang, Chorowski, Jan, Hinsu, Smit, Laurenzo, Stella, Qin, James, Firat, Orhan, Macherey, Wolfgang, Gupta, Suyog, Bapna, Ankur, Zhang, Shuyuan, Pang, Ruoming, Weiss, Ron J., Prabhavalkar, Rohit, Liang, Qiao, Jacob, Benoit, Liang, Bowen, Lee, HyoukJoong, Chelba, Ciprian, Jean, Sรฉbastien, Li, Bo, Johnson, Melvin, Anil, Rohan, Tibrewal, Rajat, Liu, Xiaobing, Eriguchi, Akiko, Jaitly, Navdeep, Ari, Naveen, Cherry, Colin, Haghani, Parisa, Good, Otavio, Cheng, Youlong, Alvarez, Raziel, Caswell, Isaac, Hsu, Wei-Ning, Yang, Zongheng, Wang, Kuan-Chieh, Gonina, Ekaterina, Tomanek, Katrin, Vanik, Ben, Wu, Zelin, Jones, Llion, Schuster, Mike, Huang, Yanping, Chen, Dehao, Irie, Kazuki, Foster, George, Richardson, John, Macherey, Klaus, Bruguier, Antoine, Zen, Heiga, Raffel, Colin, Kumar, Shankar, Rao, Kanishka, Rybach, David, Murray, Matthew, Peddinti, Vijayaditya, Krikun, Maxim, Bacchiani, Michiel A. U., Jablin, Thomas B., Suderman, Rob, Williams, Ian, Lee, Benjamin, Bhatia, Deepti, Carlson, Justin, Yavuz, Semih, Zhang, Yu, McGraw, Ian, Galkin, Max, Ge, Qi, Pundak, Golan, Whipkey, Chad, Wang, Todd, Alon, Uri, Lepikhin, Dmitry, Tian, Ye, Sabour, Sara, Chan, William, Toshniwal, Shubham, Liao, Baohua, Nirschl, Michael, Rondon, Pat
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.
Memory-Efficient Adaptive Optimization for Large-Scale Learning
Anil, Rohan, Gupta, Vineet, Koren, Tomer, Singer, Yoram
Adaptive gradient-based optimizers such as AdaGrad and Adam are among the methods of choice in modern machine learning. These methods maintain second-order statistics of each parameter, thus doubling the memory footprint of the optimizer. In behemoth-size applications, this memory overhead restricts the size of the model being used as well as the number of examples in a mini-batch. We describe a novel, simple, and flexible adaptive optimization method with sublinear memory cost that retains the benefits of per-parameter adaptivity while allowing for larger models and mini-batches. We give convergence guarantees for our method and demonstrate its effectiveness in training very large deep models.
Large scale distributed neural network training through online distillation
Anil, Rohan, Pereyra, Gabriel, Passos, Alexandre, Ormandi, Robert, Dahl, George E., Hinton, Geoffrey E.
Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6\times 10^{11}$ tokens and based on the Common Crawl repository of web data.
Wide & Deep Learning for Recommender Systems
Cheng, Heng-Tze, Koc, Levent, Harmsen, Jeremiah, Shaked, Tal, Chandra, Tushar, Aradhye, Hrishi, Anderson, Glen, Corrado, Greg, Chai, Wei, Ispir, Mustafa, Anil, Rohan, Haque, Zakaria, Hong, Lichan, Jain, Vihan, Liu, Xiaobing, Shah, Hemal
Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort. With less feature engineering, deep neural networks can generalize better to unseen feature combinations through low-dimensional dense embeddings learned for the sparse features. However, deep neural networks with embeddings can over-generalize and recommend less relevant items when the user-item interactions are sparse and high-rank. In this paper, we present Wide & Deep learning---jointly trained wide linear models and deep neural networks---to combine the benefits of memorization and generalization for recommender systems. We productionized and evaluated the system on Google Play, a commercial mobile app store with over one billion active users and over one million apps. Online experiment results show that Wide & Deep significantly increased app acquisitions compared with wide-only and deep-only models. We have also open-sourced our implementation in TensorFlow.