Andriy Mnih
Implicit Reparameterization Gradients
Mikhail Figurnov, Shakir Mohamed, Andriy Mnih
By providing a simple and efficient way of computing low-variance gradients of continuous random variables, the reparameterization trick has become the technique of choice for training a variety of latent variable models. However, it is not applicable to a number of important continuous distributions. We introduce an alternative approach to computing reparameterization gradients based on implicit differentiation and demonstrate its broader applicability by applying it to Gamma, Beta, Dirichlet, and von Mises distributions, which cannot be used with the classic reparameterization trick. Our experiments show that the proposed approach is faster and more accurate than the existing gradient estimators for these distributions.
Learning Label Trees for Probabilistic Modelling of Implicit Feedback
Andriy Mnih, Yee W. Teh
User preferences for items can be inferred from either explicit feedback, such as item ratings, or implicit feedback, such as rental histories. Research in collaborative filtering has concentrated on explicit feedback, resulting in the development of accurate and scalable models. However, since explicit feedback is often difficult to collect it is important to develop effective models that take advantage of the more widely available implicit feedback. We introduce a probabilistic approach to collaborative filtering with implicit feedback based on modelling the user's item selection process. In the interests of scalability, we restrict our attention to treestructured distributions over items and develop a principled and efficient algorithm for learning item trees from data. We also identify a problem with a widely used protocol for evaluating implicit feedback models and propose a way of addressing it using a small quantity of explicit feedback data.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, Jascha Sohl-Dickstein
Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work (Jang et al., 2016; Maddison et al., 2016) has taken a different approach, introducing a continuous relaxation of discrete variables to produce low-variance, but biased, gradient estimates. In this work, we combine the two approaches through a novel control variate that produces low-variance, unbiased gradient estimates. Then, we introduce a modification to the continuous relaxation and show that the tightness of the relaxation can be adapted online, removing it as a hyperparameter. We show state-of-the-art variance reduction on several benchmark generative modeling tasks, generally leading to faster convergence to a better final log-likelihood.
Implicit Reparameterization Gradients
Mikhail Figurnov, Shakir Mohamed, Andriy Mnih
By providing a simple and efficient way of computing low-variance gradients of continuous random variables, the reparameterization trick has become the technique of choice for training a variety of latent variable models. However, it is not applicable to a number of important continuous distributions. We introduce an alternative approach to computing reparameterization gradients based on implicit differentiation and demonstrate its broader applicability by applying it to Gamma, Beta, Dirichlet, and von Mises distributions, which cannot be used with the classic reparameterization trick. Our experiments show that the proposed approach is faster and more accurate than the existing gradient estimators for these distributions.
Variational Memory Addressing in Generative Models
Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende
Aiming to augment generative models with external memory, we interpret the output of a memory module with stochastic addressing as a conditional mixture distribution, where a read operation corresponds to sampling a discrete memory address and retrieving the corresponding content from memory. This perspective allows us to apply variational inference to memory addressing, which enables effective training of the memory module by using the target information to guide memory lookups. Stochastic addressing is particularly well-suited for generative models as it naturally encourages multimodality which is a prominent aspect of most high-dimensional datasets. Treating the chosen address as a latent variable also allows us to quantify the amount of information gained with a memory lookup and measure the contribution of the memory module to the generative process. To illustrate the advantages of this approach we incorporate it into a variational autoencoder and apply the resulting model to the task of generative few-shot learning. The intuition behind this architecture is that the memory module can pick a relevant template from memory and the continuous part of the model can concentrate on modeling remaining variations. We demonstrate empirically that our model is able to identify and access the relevant memory contents even with hundreds of unseen Omniglot characters in memory.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, Jascha Sohl-Dickstein
Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work (Jang et al., 2016; Maddison et al., 2016) has taken a different approach, introducing a continuous relaxation of discrete variables to produce low-variance, but biased, gradient estimates. In this work, we combine the two approaches through a novel control variate that produces low-variance, unbiased gradient estimates. Then, we introduce a modification to the continuous relaxation and show that the tightness of the relaxation can be adapted online, removing it as a hyperparameter. We show state-of-the-art variance reduction on several benchmark generative modeling tasks, generally leading to faster convergence to a better final log-likelihood.
Variational Memory Addressing in Generative Models
Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende
Aiming to augment generative models with external memory, we interpret the output of a memory module with stochastic addressing as a conditional mixture distribution, where a read operation corresponds to sampling a discrete memory address and retrieving the corresponding content from memory. This perspective allows us to apply variational inference to memory addressing, which enables effective training of the memory module by using the target information to guide memory lookups. Stochastic addressing is particularly well-suited for generative models as it naturally encourages multimodality which is a prominent aspect of most high-dimensional datasets. Treating the chosen address as a latent variable also allows us to quantify the amount of information gained with a memory lookup and measure the contribution of the memory module to the generative process. To illustrate the advantages of this approach we incorporate it into a variational autoencoder and apply the resulting model to the task of generative few-shot learning. The intuition behind this architecture is that the memory module can pick a relevant template from memory and the continuous part of the model can concentrate on modeling remaining variations. We demonstrate empirically that our model is able to identify and access the relevant memory contents even with hundreds of unseen Omniglot characters in memory.