Goto

Collaborating Authors

 Andreu-Perez, Javier


Compact Rule-Based Classifier Learning via Gradient Descent

arXiv.org Artificial Intelligence

Rule-based models play a crucial role in scenarios that require transparency and accountable decision-making. However, they primarily consist of discrete parameters and structures, which presents challenges for scalability and optimization. In this work, we introduce a new rule-based classifier trained using gradient descent, in which the user can control the maximum number and length of the rules. For numerical partitions, the user can also control the partitions used with fuzzy sets, which also helps keep the number of partitions small. We perform a series of exhaustive experiments on $40$ datasets to show how this classifier performs in terms of accuracy and rule base size. Then, we compare our results with a genetic search that fits an equivalent classifier and with other explainable and non-explainable state-of-the-art classifiers. Our results show how our method can obtain compact rule bases that use significantly fewer patterns than other rule-based methods and perform better than other explainable classifiers.


Transfer Learning with Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-centre Data

arXiv.org Artificial Intelligence

Machine learning and deep learning advancements have boosted Brain-Computer Interface (BCI) performance, but their wide-scale applicability is limited due to factors like individual health, hardware variations, and cultural differences affecting neural data. Studies often focus on uniform single-site experiments in uniform settings, leading to high performance that may not translate well to real-world diversity. Deep learning models aim to enhance BCI classification accuracy, and transfer learning has been suggested to adapt models to individual neural patterns using a base model trained on others' data. This approach promises better generalizability and reduced overfitting, yet challenges remain in handling diverse and imbalanced datasets from different equipment, subjects, multiple centres in different countries, and both healthy and patient populations for effective model transfer and tuning. In a setting characterized by maximal heterogeneity, we proposed P300 wave detection in BCIs employing a convolutional neural network fitted with adaptive transfer learning based on Poison Sampling Disk (PDS) called Active Sampling (AS), which flexibly adjusts the transition from source data to the target domain. Our results reported for subject adaptive with 40% of adaptive fine-tuning that the averaged classification accuracy improved by 5.36% and standard deviation reduced by 12.22% using two distinct, internationally replicated datasets. These results outperformed in classification accuracy, computational time, and training efficiency, mainly due to the proposed Active Sampling (AS) method for transfer learning.


Fuzzy Norm-Explicit Product Quantization for Recommender Systems

arXiv.org Artificial Intelligence

As the data resources grow, providing recommendations that best meet the demands has become a vital requirement in business and life to overcome the information overload problem. However, building a system suggesting relevant recommendations has always been a point of debate. One of the most cost-efficient techniques in terms of producing relevant recommendations at a low complexity is Product Quantization (PQ). PQ approaches have continued developing in recent years. This system's crucial challenge is improving product quantization performance in terms of recall measures without compromising its complexity. This makes the algorithm suitable for problems that require a greater number of potentially relevant items without disregarding others, at high-speed and low-cost to keep up with traffic. This is the case of online shops where the recommendations for the purpose are important, although customers can be susceptible to scoping other products. This research proposes a fuzzy approach to perform norm-based product quantization. Type-2 Fuzzy sets (T2FSs) define the codebook allowing sub-vectors (T2FSs) to be associated with more than one element of the codebook, and next, its norm calculus is resolved by means of integration. Our method finesses the recall measure up, making the algorithm suitable for problems that require querying at most possible potential relevant items without disregarding others. The proposed method outperforms all PQ approaches such as NEQ, PQ, and RQ up to +6%, +5%, and +8% by achieving a recall of 94%, 69%, 59% in Netflix, Audio, Cifar60k datasets, respectively. More and over, computing time and complexity nearly equals the most computationally efficient existing PQ method in the state-of-the-art.


Personalised and Adjustable Interval Type-2 Fuzzy-Based PPG Quality Assessment for the Edge

arXiv.org Artificial Intelligence

Most of today's wearable technology provides seamless cardiac activity monitoring. Specifically, the vast majority employ Photoplethysmography (PPG) sensors to acquire blood volume pulse information, which is further analysed to extract useful and physiologically related features. Nevertheless, PPG-based signal reliability presents different challenges that strongly affect such data processing. This is mainly related to the fact of PPG morphological wave distortion due to motion artefacts, which can lead to erroneous interpretation of the extracted cardiac-related features. On this basis, in this paper, we propose a novel personalised and adjustable Interval Type-2 Fuzzy Logic System (IT2FLS) for assessing the quality of PPG signals. The proposed system employs a personalised approach to adapt the IT2FLS parameters to the unique characteristics of each individual's PPG signals.Additionally, the system provides adjustable levels of personalisation, allowing healthcare providers to adjust the system to meet specific requirements for different applications. The proposed system obtained up to 93.72\% for average accuracy during validation. The presented system has the potential to enable ultra-low complexity and real-time PPG quality assessment, improving the accuracy and reliability of PPG-based health monitoring systems at the edge.


EMGTFNet: Fuzzy Vision Transformer to decode Upperlimb sEMG signals for Hand Gestures Recognition

arXiv.org Artificial Intelligence

Myoelectric control is an area of electromyography of increasing interest nowadays, particularly in applications such as Hand Gesture Recognition (HGR) for bionic prostheses. Today's focus is on pattern recognition using Machine Learning and, more recently, Deep Learning methods. Despite achieving good results on sparse sEMG signals, the latter models typically require large datasets and training times. Furthermore, due to the nature of stochastic sEMG signals, traditional models fail to generalize samples for atypical or noisy values. In this paper, we propose the design of a Vision Transformer (ViT) based architecture with a Fuzzy Neural Block (FNB) called EMGTFNet to perform Hand Gesture Recognition from surface electromyography (sEMG) signals. The proposed EMGTFNet architecture can accurately classify a variety of hand gestures without any need for data augmentation techniques, transfer learning or a significant increase in the number of parameters in the network. The accuracy of the proposed model is tested using the publicly available NinaPro database consisting of 49 different hand gestures. Experiments yield an average test accuracy of 83.57\% \& 3.5\% using a 200 ms window size and only 56,793 trainable parameters. Our results outperform the ViT without FNB, thus demonstrating that including FNB improves its performance. Our proposal framework EMGTFNet reported the significant potential for its practical application for prosthetic control.


Towards Understanding Human Functional Brain Development with Explainable Artificial Intelligence: Challenges and Perspectives

arXiv.org Artificial Intelligence

The last decades have seen significant advancements in non-invasive neuroimaging technologies that have been increasingly adopted to examine human brain development. However, these improvements have not necessarily been followed by more sophisticated data analysis measures that are able to explain the mechanisms underlying functional brain development. For example, the shift from univariate (single area in the brain) to multivariate (multiple areas in brain) analysis paradigms is of significance as it allows investigations into the interactions between different brain regions. However, despite the potential of multivariate analysis to shed light on the interactions between developing brain regions, artificial intelligence (AI) techniques applied render the analysis non-explainable. The purpose of this paper is to understand the extent to which current state-of-the-art AI techniques can inform functional brain development. In addition, a review of which AI techniques are more likely to explain their learning based on the processes of brain development as defined by developmental cognitive neuroscience (DCN) frameworks is also undertaken. This work also proposes that eXplainable AI (XAI) may provide viable methods to investigate functional brain development as hypothesised by DCN frameworks.


Recognition of Patient Groups with Sleep Related Disorders using Bio-signal Processing and Deep Learning

arXiv.org Artificial Intelligence

Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem.


Artificial Intelligence and Robotics

arXiv.org Artificial Intelligence

The recent successes of AI have captured the wildest imagination of both the scientific communities and the general public. Robotics and AI amplify human potentials, increase productivity and are moving from simple reasoning towards human-like cognitive abilities. Current AI technologies are used in a set area of applications, ranging from healthcare, manufacturing, transport, energy, to financial services, banking, advertising, management consulting and government agencies. The global AI market is around 260 billion USD in 2016 and it is estimated to exceed 3 trillion by 2024. To understand the impact of AI, it is important to draw lessons from it's past successes and failures and this white paper provides a comprehensive explanation of the evolution of AI, its current status and future directions.