Goto

Collaborating Authors

 Andreas, Jacob


The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks

arXiv.org Artificial Intelligence

Do neural networks, trained on well-understood algorithmic tasks, reliably rediscover known algorithms for solving those tasks? Several recent studies, on tasks ranging from group arithmetic to in-context linear regression, have suggested that the answer is yes. Using modular addition as a prototypical problem, we show that algorithm discovery in neural networks is sometimes more complex. Small changes to model hyperparameters and initializations can induce discovery of qualitatively different algorithms from a fixed training set, and even parallel implementations of multiple such algorithms. Some networks trained to perform modular addition implement a familiar Clock algorithm (previously described by Nanda et al. [1]); others implement a previously undescribed, less intuitive, but comprehensible procedure we term the Pizza algorithm, or a variety of even more complex procedures. Our results show that even simple learning problems can admit a surprising diversity of solutions, motivating the development of new tools for characterizing the behavior of neural networks across their algorithmic phase space.


Regularized Conventions: Equilibrium Computation as a Model of Pragmatic Reasoning

arXiv.org Artificial Intelligence

We present a model of pragmatic language understanding, where utterances are produced and understood by searching for regularized equilibria of signaling games. In this model (which we call ReCo, for Regularized Conventions), speakers and listeners search for contextually appropriate utterance--meaning mappings that are both close to game-theoretically optimal conventions and close to a shared, ''default'' semantics. By characterizing pragmatic communication as equilibrium search, we obtain principled sampling algorithms and formal guarantees about the trade-off between communicative success and naturalness. Across several datasets capturing real and idealized human judgments about pragmatic implicatures, ReCo matches or improves upon predictions made by best response and rational speech act models of language understanding.


Interpreting User Requests in the Context of Natural Language Standing Instructions

arXiv.org Artificial Intelligence

Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.


Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

arXiv.org Artificial Intelligence

Uncertainty decomposition refers to the task of decomposing the total uncertainty of a model into data (aleatoric) uncertainty, resulting from the inherent complexity or ambiguity of the data, and model (epistemic) uncertainty, resulting from the lack of knowledge in the model. Performing uncertainty decomposition for large language models (LLMs) is an important step toward improving the reliability, trustworthiness, and interpretability of LLMs, but this research task is very challenging and remains unresolved. The existing canonical method, Bayesian Neural Network (BNN), cannot be applied to LLMs, because BNN requires training and ensembling multiple variants of models, which is infeasible or prohibitively expensive for LLMs. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarifications ensemble, which bypasses the need to train new models. Rather than ensembling models with different parameters, our approach generates a set of clarifications for the input, feeds them into the fixed LLMs, and ensembles the corresponding predictions. We show that our framework shares a symmetric decomposition structure with BNN. Empirical evaluations demonstrate that the proposed framework provides accurate and reliable uncertainty quantification on various tasks. Code will be made publicly available at https://github.com/UCSB-NLP-Chang/llm_uncertainty .


LILO: Learning Interpretable Libraries by Compressing and Documenting Code

arXiv.org Artificial Intelligence

While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.


Pushdown Layers: Encoding Recursive Structure in Transformer Language Models

arXiv.org Artificial Intelligence

Recursion is a prominent feature of human language, and fundamentally challenging for self-attention due to the lack of an explicit recursive-state tracking mechanism. Consequently, Transformer language models poorly capture long-tail recursive structure and exhibit sample-inefficient syntactic generalization. This work introduces Pushdown Layers, a new self-attention layer that models recursive state via a stack tape that tracks estimated depths of every token in an incremental parse of the observed prefix. Transformer LMs with Pushdown Layers are syntactic language models that autoregressively and synchronously update this stack tape as they predict new tokens, in turn using the stack tape to softly modulate attention over tokens -- for instance, learning to "skip" over closed constituents. When trained on a corpus of strings annotated with silver constituency parses, Transformers equipped with Pushdown Layers achieve dramatically better and 3-5x more sample-efficient syntactic generalization, while maintaining similar perplexities. Pushdown Layers are a drop-in replacement for standard self-attention. We illustrate this by finetuning GPT2-medium with Pushdown Layers on an automatically parsed WikiText-103, leading to improvements on several GLUE text classification tasks.


Visual Grounding Helps Learn Word Meanings in Low-Data Regimes

arXiv.org Artificial Intelligence

Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension, and their internal representations are remarkably well-aligned with representations of language in the human brain. But to achieve these results, LMs must be trained in distinctly un-human-like ways -- requiring orders of magnitude more language data than children receive during development, and without any of the accompanying grounding in perception, action, or social behavior. Do models trained more naturalistically -- with grounded supervision -- exhibit more human-like language learning? We investigate this question in the context of word learning, a key sub-task in language acquisition. We train a diverse set of LM architectures, with and without auxiliary supervision from image captioning tasks, on datasets of varying scales. We then evaluate these models on a broad set of benchmarks characterizing models' learning of syntactic categories, lexical relations, semantic features, semantic similarity, and alignment with human neural representations. We find that visual supervision can indeed improve the efficiency of word learning. However, these improvements are limited: they are present almost exclusively in the low-data regime, and sometimes canceled out by the inclusion of rich distributional signals from text. The information conveyed by text and images is not redundant -- we find that models mainly driven by visual information yield qualitatively different from those mainly driven by word co-occurrences. However, our results suggest that current multi-modal modeling approaches fail to effectively leverage visual information to build more human-like word representations from human-sized datasets.


Eliciting Human Preferences with Language Models

arXiv.org Artificial Intelligence

Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.


The Consensus Game: Language Model Generation via Equilibrium Search

arXiv.org Artificial Intelligence

When applied to question answering and other text generation tasks, language models (LMs) may be queried generatively (by sampling answers from their output distribution) or discriminatively (by using them to score or rank a set of candidate outputs). These procedures sometimes yield very different predictions. How do we reconcile mutually incompatible scoring procedures to obtain coherent LM predictions? We introduce a new, a training-free, game-theoretic procedure for language model decoding. Our approach casts language model decoding as a regularized imperfect-information sequential signaling game - which we term the CONSENSUS GAME - in which a GENERATOR seeks to communicate an abstract correctness parameter using natural language sentences to a DISCRIMINATOR. We develop computational procedures for finding approximate equilibria of this game, resulting in a decoding algorithm we call EQUILIBRIUM-RANKING. Applied to a large number of tasks (including reading comprehension, commonsense reasoning, mathematical problem-solving, and dialog), EQUILIBRIUM-RANKING consistently, and sometimes substantially, improves performance over existing LM decoding procedures - on multiple benchmarks, we observe that applying EQUILIBRIUM-RANKING to LLaMA-7B outperforms the much larger LLaMA-65B and PaLM-540B models. These results highlight the promise of game-theoretic tools for addressing fundamental challenges of truthfulness and consistency in LMs.


Guiding Pretraining in Reinforcement Learning with Large Language Models

arXiv.org Artificial Intelligence

Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped reward function. Intrinsically motivated exploration methods address this limitation by rewarding agents for visiting novel states or transitions, but these methods offer limited benefits in large environments where most discovered novelty is irrelevant for downstream tasks. We describe a method that uses background knowledge from text corpora to shape exploration. This method, called ELLM (Exploring with LLMs) rewards an agent for achieving goals suggested by a language model prompted with a description of the agent's current state. By leveraging large-scale language model pretraining, ELLM guides agents toward human-meaningful and plausibly useful behaviors without requiring a human in the loop. We evaluate ELLM in the Crafter game environment and the Housekeep robotic simulator, showing that ELLM-trained agents have better coverage of common-sense behaviors during pretraining and usually match or improve performance on a range of downstream tasks. Code available at https://github.com/yuqingd/ellm.