Andrea Tacchetti
Trading robust representations for sample complexity through self-supervised visual experience
Andrea Tacchetti, Stephen Voinea, Georgios Evangelopoulos
Learning in small sample regimes is among the most remarkable features of the human perceptual system. This ability is related to robustness to transformations, which is acquired through visual experience in the form of weak-or self-supervision during development. We explore the idea of allowing artificial systems to learn representations of visual stimuli through weak supervision prior to downstream supervised tasks. We introduce a novel loss function for representation learning using unlabeled image sets and video sequences, and experimentally demonstrate that these representations support one-shot learning and reduce the sample complexity of multiple recognition tasks. We establish the existence of a trade-off between the sizes of weakly supervised, automatically obtained from video sequences, and fully supervised data sets. Our results suggest that equivalence sets other than class labels, which are abundant in unlabeled visual experience, can be used for self-supervised learning of semantically relevant image embeddings.
Visual Interaction Networks: Learning a Physics Simulator from Video
Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, Andrea Tacchetti
From just a glance, humans can make rich predictions about the future of a wide range of physical systems. On the other hand, modern approaches from engineering, robotics, and graphics are often restricted to narrow domains or require information about the underlying state. We introduce the Visual Interaction Network, a generalpurpose model for learning the dynamics of a physical system from raw visual observations. Our model consists of a perceptual front-end based on convolutional neural networks and a dynamics predictor based on interaction networks. Through joint training, the perceptual front-end learns to parse a dynamic visual scene into a set of factored latent object representations. The dynamics predictor learns to roll these states forward in time by computing their interactions, producing a predicted physical trajectory of arbitrary length. We found that from just six input video frames the Visual Interaction Network can generate accurate future trajectories of hundreds of time steps on a wide range of physical systems. Our model can also be applied to scenes with invisible objects, inferring their future states from their effects on the visible objects, and can implicitly infer the unknown mass of objects. This work opens new opportunities for model-based decision-making and planning from raw sensory observations in complex physical environments.
Trading robust representations for sample complexity through self-supervised visual experience
Andrea Tacchetti, Stephen Voinea, Georgios Evangelopoulos
Learning in small sample regimes is among the most remarkable features of the human perceptual system. This ability is related to robustness to transformations, which is acquired through visual experience in the form of weak-or self-supervision during development. We explore the idea of allowing artificial systems to learn representations of visual stimuli through weak supervision prior to downstream supervised tasks. We introduce a novel loss function for representation learning using unlabeled image sets and video sequences, and experimentally demonstrate that these representations support one-shot learning and reduce the sample complexity of multiple recognition tasks. We establish the existence of a trade-off between the sizes of weakly supervised, automatically obtained from video sequences, and fully supervised data sets. Our results suggest that equivalence sets other than class labels, which are abundant in unlabeled visual experience, can be used for self-supervised learning of semantically relevant image embeddings.