Andersson, Olov
HiMo: High-Speed Objects Motion Compensation in Point Clouds
Zhang, Qingwen, Khoche, Ajinkya, Yang, Yi, Ling, Li, Mansouri, Sina Sharif, Andersson, Olov, Jensfelt, Patric
LiDAR point clouds often contain motion-induced distortions, degrading the accuracy of object appearances in the captured data. In this paper, we first characterize the underlying reasons for the point cloud distortion and show that this is present in public datasets. We find that this distortion is more pronounced in high-speed environments such as highways, as well as in multi-LiDAR configurations, a common setup for heavy vehicles. Previous work has dealt with point cloud distortion from the ego-motion but fails to consider distortion from the motion of other objects. We therefore introduce a novel undistortion pipeline, HiMo, that leverages scene flow estimation for object motion compensation, correcting the depiction of dynamic objects. We further propose an extension of a state-of-the-art self-supervised scene flow method. Due to the lack of well-established motion distortion metrics in the literature, we also propose two metrics for compensation performance evaluation: compensation accuracy at a point level and shape similarity on objects. To demonstrate the efficacy of our method, we conduct extensive experiments on the Argoverse 2 dataset and a new real-world dataset. Our new dataset is collected from heavy vehicles equipped with multi-LiDARs and on highways as opposed to mostly urban settings in the existing datasets. The source code, including all methods and the evaluation data, will be provided upon publication. See https://kin-zhang.github.io/HiMo for more details.
S$^2$-Diffusion: Generalizing from Instance-level to Category-level Skills in Robot Manipulation
Yang, Quantao, Welle, Michael C., Kragic, Danica, Andersson, Olov
Recent advances in skill learning has propelled robot manipulation to new heights by enabling it to learn complex manipulation tasks from a practical number of demonstrations. However, these skills are often limited to the particular action, object, and environment \textit{instances} that are shown in the training data, and have trouble transferring to other instances of the same category. In this work we present an open-vocabulary Spatial-Semantic Diffusion policy (S$^2$-Diffusion) which enables generalization from instance-level training data to category-level, enabling skills to be transferable between instances of the same category. We show that functional aspects of skills can be captured via a promptable semantic module combined with a spatial representation. We further propose leveraging depth estimation networks to allow the use of only a single RGB camera. Our approach is evaluated and compared on a diverse number of robot manipulation tasks, both in simulation and in the real world. Our results show that S$^2$-Diffusion is invariant to changes in category-irrelevant factors as well as enables satisfying performance on other instances within the same category, even if it was not trained on that specific instance. Full videos of all real-world experiments are available in the supplementary material.
SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving
Zhang, Qingwen, Yang, Yi, Li, Peizheng, Andersson, Olov, Jensfelt, Patric
Scene flow estimation predicts the 3D motion at each point in successive LiDAR scans. This detailed, point-level, information can help autonomous vehicles to accurately predict and understand dynamic changes in their surroundings. Current state-of-the-art methods require annotated data to train scene flow networks and the expense of labeling inherently limits their scalability. Self-supervised approaches can overcome the above limitations, yet face two principal challenges that hinder optimal performance: point distribution imbalance and disregard for object-level motion constraints. In this paper, we propose SeFlow, a self-supervised method that integrates efficient dynamic classification into a learning-based scene flow pipeline. We demonstrate that classifying static and dynamic points helps design targeted objective functions for different motion patterns. We also emphasize the importance of internal cluster consistency and correct object point association to refine the scene flow estimation, in particular on object details. Our real-time capable method achieves state-of-the-art performance on the self-supervised scene flow task on Argoverse 2 and Waymo datasets. The code is open-sourced at https://github.com/KTH-RPL/SeFlow along with trained model weights.
Learning to Fly Omnidirectional Micro Aerial Vehicles with an End-To-End Control Network
Cuniato, Eugenio, Andersson, Olov, Oleynikova, Helen, Siegwart, Roland, Pantic, Michael
Overactuated tilt-rotor platforms offer many advantages over traditional fixed-arm drones, allowing the decoupling of the applied force from the attitude of the robot. This expands their application areas to aerial interaction and manipulation, and allows them to overcome disturbances such as from ground or wall effects by exploiting the additional degrees of freedom available to their controllers. However, the overactuation also complicates the control problem, especially if the motors that tilt the arms have slower dynamics than those spinning the propellers. Instead of building a complex model-based controller that takes all of these subtleties into account, we attempt to learn an end-to-end pose controller using Reinforcement Learning (RL), and show its superior behavior in the presence of inertial and force disturbances compared to a state-of-the-art traditional controller.
Dynablox: Real-time Detection of Diverse Dynamic Objects in Complex Environments
Schmid, Lukas, Andersson, Olov, Sulser, Aurelio, Pfreundschuh, Patrick, Siegwart, Roland
Real-time detection of moving objects is an essential capability for robots acting autonomously in dynamic environments. We thus propose Dynablox, a novel online mapping-based approach for robust moving object detection in complex environments. The central idea of our approach is to incrementally estimate high confidence free-space areas by modeling and accounting for sensing, state estimation, and mapping limitations during online robot operation. The spatio-temporally conservative free space estimate enables robust detection of moving objects without making any assumptions on the appearance of objects or environments. This allows deployment in complex scenes such as multi-storied buildings or staircases, and for diverse moving objects such as people carrying various items, doors swinging or even balls rolling around. We thoroughly evaluate our approach on real-world data sets, achieving 86% IoU at 17 FPS in typical robotic settings. The method outperforms a recent appearance-based classifier and approaches the performance of offline methods. We demonstrate its generality on a novel data set with rare moving objects in complex environments. We make our efficient implementation and the novel data set available as open-source.
Learning to Open Doors with an Aerial Manipulator
Cuniato, Eugenio, Geles, Ismail, Zhang, Weixuan, Andersson, Olov, Tognon, Marco, Siegwart, Roland
The field of aerial manipulation has seen rapid advances, transitioning from push-and-slide tasks to interaction with articulated objects. So far, when more complex actions are performed, the motion trajectory is usually handcrafted or a result of online optimization methods like Model Predictive Control (MPC) or Model Predictive Path Integral (MPPI) control. However, these methods rely on heuristics or model simplifications to efficiently run on onboard hardware, producing results in acceptable amounts of time. Moreover, they can be sensitive to disturbances and differences between the real environment and its simulated counterpart. In this work, we propose a Reinforcement Learning (RL) approach to learn motion behaviors for a manipulation task while producing policies that are robust to disturbances and modeling errors. Specifically, we train a policy to perform a door-opening task with an Omnidirectional Micro Aerial Vehicle (OMAV). The policy is trained in a physics simulator and experiments are presented both in simulation and running onboard the real platform, investigating the simulation to real world transfer. We compare our method against a state-of-the-art MPPI solution, showing a considerable increase in robustness and speed.
Material-agnostic Shaping of Granular Materials with Optimal Transport
Alatur, Nikhilesh, Andersson, Olov, Siegwart, Roland, Ott, Lionel
From construction materials, such as sand or asphalt, to kitchen ingredients, like rice, sugar, or salt; the world is full of granular materials. Despite impressive progress in robotic manipulation, manipulating and interacting with granular material remains a challenge due to difficulties in perceiving, representing, modelling, and planning for these variable materials that have complex internal dynamics. While some prior work has looked into estimating or learning accurate dynamics models for granular materials, the literature is still missing a more abstract planning method that can be used for planning manipulation actions for granular materials with unknown material properties. In this work, we leverage tools from optimal transport and connect them to robot motion planning. We propose a heuristics-based sweep planner that does not require knowledge of the material's properties and directly uses a height map representation to generate promising sweeps. These sweeps transform granular material from arbitrary start shapes into arbitrary target shapes. We apply the sweep planner in a fast and reactive feedback loop and avoid the need for model-based planning over multiple time steps. We validate our approach with a large set of simulation and hardware experiments where we show that our method is capable of efficiently solving several complex tasks, including gathering, separating, and shaping of several types of granular materials into different target shapes.
Obstacle avoidance using raycasting and Riemannian Motion Policies at kHz rates for MAVs
Pantic, Michael, Meijer, Isar, Bähnemann, Rik, Alatur, Nikhilesh, Andersson, Olov, Lerma, Cesar Cadena, Siegwart, Roland, Ott, Lionel
In this paper, we present a novel method for using Riemannian Motion Policies on volumetric maps, shown in the example of obstacle avoidance for Micro Aerial Vehicles (MAVs). While sampling or optimization-based planners are widely used for obstacle avoidance with volumetric maps, they are computationally expensive and often have inflexible monolithic architectures. Riemannian Motion Policies are a modular, parallelizable, and efficient navigation paradigm but are challenging to use with the widely used voxel-based environment representations. We propose using GPU raycasting and a large number of concurrent policies to provide direct obstacle avoidance using Riemannian Motion Policies in voxelized maps without the need for smoothing or pre-processing of the map. Additionally, we present how the same method can directly plan on LiDAR scans without the need for an intermediate map. We show how this reactive approach compares favorably to traditional planning methods and is able to plan using thousands of rays at kilohertz rates. We demonstrate the planner successfully on a real MAV for static and dynamic obstacles. The presented planner is made available as an open-source software package.
Fast and Compute-efficient Sampling-based Local Exploration Planning via Distribution Learning
Schmid, Lukas, Ni, Chao, Zhong, Yuliang, Siegwart, Roland, Andersson, Olov
Abstract-- Exploration is a fundamental problem in robotics. While sampling-based planners have shown high performance and robustness, they are oftentimes compute intensive and can exhibit high variance. To this end, we propose to learn both components of sampling-based exploration. We present a method to directly learn an underlying informed distribution of views based on the spatial context in the robot's map, and further explore a variety of methods to also learn the information gain of each sample. We show in thorough experimental evaluation that our proposed system improves exploration performance by up to 28% over classical methods, and find that learning the gains in addition to the sampling distribution can provide favorable performance vs. compute trade-offs for compute-constrained systems. We demonstrate in simulation and on a low-cost mobile robot that our system Figure 1: A small compute-constrained mobile robot exploring an generalizes well to varying environments.
Deep Learning Quadcopter Control via Risk-Aware Active Learning
Andersson, Olov (Linköping University) | Wzorek, Mariusz (Linköping University) | Doherty, Patrick (Linköping University)
Modern optimization-based approaches to control increasingly allow automatic generation of complex behavior from only a model and an objective. Recent years has seen growing interest in fast solvers to also allow real-time operation on robots, but the computational cost of such trajectory optimization remains prohibitive for many applications. In this paper we examine a novel deep neural network approximation and validate it on a safe navigation problem with a real nano-quadcopter. As the risk of costly failures is a major concern with real robots, we propose a risk-aware resampling technique. Contrary to prior work this active learning approach is easy to use with existing solvers for trajectory optimization, as well as deep learning. We demonstrate the efficacy of the approach on a difficult collision avoidance problem with non-cooperative moving obstacles. Our findings indicate that the resulting neural network approximations are least 50 times faster than the trajectory optimizer while still satisfying the safety requirements. We demonstrate the potential of the approach by implementing a synthesized deep neural network policy on the nano-quadcopter microcontroller.