Anderson, Ross
Human-Producible Adversarial Examples
Khachaturov, David, Gao, Yue, Shumailov, Ilia, Mullins, Robert, Anderson, Ross, Fawaz, Kassem
Visual adversarial examples have so far been restricted to pixel-level image manipulations in the digital world, or have required sophisticated equipment such as 2D or 3D printers to be produced in the physical real world. We present the first ever method of generating human-producible adversarial examples for the real world that requires nothing more complicated than a marker pen. We call them $\textbf{adversarial tags}$. First, building on top of differential rendering, we demonstrate that it is possible to build potent adversarial examples with just lines. We find that by drawing just $4$ lines we can disrupt a YOLO-based model in $54.8\%$ of cases; increasing this to $9$ lines disrupts $81.8\%$ of the cases tested. Next, we devise an improved method for line placement to be invariant to human drawing error. We evaluate our system thoroughly in both digital and analogue worlds and demonstrate that our tags can be applied by untrained humans. We demonstrate the effectiveness of our method for producing real-world adversarial examples by conducting a user study where participants were asked to draw over printed images using digital equivalents as guides. We further evaluate the effectiveness of both targeted and untargeted attacks, and discuss various trade-offs and method limitations, as well as the practical and ethical implications of our work. The source code will be released publicly.
Machine Learning needs its own Randomness Standard: Randomised Smoothing and PRNG-based attacks
Dahiya, Pranav, Shumailov, Ilia, Anderson, Ross
Randomness supports many critical functions in the field of machine learning (ML) including optimisation, data selection, privacy, and security. ML systems outsource the task of generating or harvesting randomness to the compiler, the cloud service provider or elsewhere in the toolchain. Yet there is a long history of attackers exploiting poor randomness, or even creating it -- as when the NSA put backdoors in random number generators to break cryptography. In this paper we consider whether attackers can compromise an ML system using only the randomness on which they commonly rely. We focus our effort on Randomised Smoothing, a popular approach to train certifiably robust models, and to certify specific input datapoints of an arbitrary model. We choose Randomised Smoothing since it is used for both security and safety -- to counteract adversarial examples and quantify uncertainty respectively. Under the hood, it relies on sampling Gaussian noise to explore the volume around a data point to certify that a model is not vulnerable to adversarial examples. We demonstrate an entirely novel attack against it, where an attacker backdoors the supplied randomness to falsely certify either an overestimate or an underestimate of robustness. We demonstrate that such attacks are possible, that they require very small changes to randomness to succeed, and that they can be hard to detect. As an example, we hide an attack in the random number generator and show that the randomness tests suggested by NIST fail to detect it. We advocate updating the NIST guidelines on random number testing to make them more appropriate for safety-critical and security-critical machine-learning applications.
When Vision Fails: Text Attacks Against ViT and OCR
Boucher, Nicholas, Blessing, Jenny, Shumailov, Ilia, Anderson, Ross, Papernot, Nicolas
While text-based machine learning models that operate on visual inputs of rendered text have become robust against a wide range of existing attacks, we show that they are still vulnerable to visual adversarial examples encoded as text. We use the Unicode functionality of combining diacritical marks to manipulate encoded text so that small visual perturbations appear when the text is rendered. We show how a genetic algorithm can be used to generate visual adversarial examples in a black-box setting, and conduct a user study to establish that the model-fooling adversarial examples do not affect human comprehension. We demonstrate the effectiveness of these attacks in the real world by creating adversarial examples against production models published by Facebook, Microsoft, IBM, and Google.
The Curse of Recursion: Training on Generated Data Makes Models Forget
Shumailov, Ilia, Shumaylov, Zakhar, Zhao, Yiren, Gal, Yarin, Papernot, Nicolas, Anderson, Ross
Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3(.5) and GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT introduced such language models to the general public. It is now clear that large language models (LLMs) are here to stay, and will bring about drastic change in the whole ecosystem of online text and images. In this paper we consider what the future might hold. What will happen to GPT-{n} once LLMs contribute much of the language found online? We find that use of model-generated content in training causes irreversible defects in the resulting models, where tails of the original content distribution disappear. We refer to this effect as Model Collapse and show that it can occur in Variational Autoencoders, Gaussian Mixture Models and LLMs. We build theoretical intuition behind the phenomenon and portray its ubiquity amongst all learned generative models. We demonstrate that it has to be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of content generated by LLMs in data crawled from the Internet.
Markpainting: Adversarial Machine Learning meets Inpainting
Khachaturov, David, Shumailov, Ilia, Zhao, Yiren, Papernot, Nicolas, Anderson, Ross
Inpainting is a learned interpolation technique that is based on generative modeling and used to populate masked or missing pieces in an image; it has wide applications in picture editing and retouching. Recently, inpainting started being used for watermark removal, raising concerns. In this paper we study how to manipulate it using our markpainting technique. First, we show how an image owner with access to an inpainting model can augment their image in such a way that any attempt to edit it using that model will add arbitrary visible information. We find that we can target multiple different models simultaneously with our technique. This can be designed to reconstitute a watermark if the editor had been trying to remove it. Second, we show that our markpainting technique is transferable to models that have different architectures or were trained on different datasets, so watermarks created using it are difficult for adversaries to remove. Markpainting is novel and can be used as a manipulation alarm that becomes visible in the event of inpainting.
Manipulating SGD with Data Ordering Attacks
Shumailov, Ilia, Shumaylov, Zakhar, Kazhdan, Dmitry, Zhao, Yiren, Papernot, Nicolas, Erdogdu, Murat A., Anderson, Ross
Machine learning is vulnerable to a wide variety of different attacks. It is now well understood that by changing the underlying data distribution, an adversary can poison the model trained with it or introduce backdoors. In this paper we present a novel class of training-time attacks that require no changes to the underlying model dataset or architecture, but instead only change the order in which data are supplied to the model. In particular, an attacker can disrupt the integrity and availability of a model by simply reordering training batches, with no knowledge about either the model or the dataset. Indeed, the attacks presented here are not specific to the model or dataset, but rather target the stochastic nature of modern learning procedures. We extensively evaluate our attacks to find that the adversary can disrupt model training and even introduce backdoors. For integrity we find that the attacker can either stop the model from learning, or poison it to learn behaviours specified by the attacker. For availability we find that a single adversarially-ordered epoch can be enough to slow down model learning, or even to reset all of the learning progress. Such attacks have a long-term impact in that they decrease model performance hundreds of epochs after the attack took place. Reordering is a very powerful adversarial paradigm in that it removes the assumption that an adversary must inject adversarial data points or perturbations to perform training-time attacks. It reminds us that stochastic gradient descent relies on the assumption that data are sampled at random. If this randomness is compromised, then all bets are off.
Nudge Attacks on Point-Cloud DNNs
Zhao, Yiren, Shumailov, Ilia, Mullins, Robert, Anderson, Ross
The wide adaption of 3D point-cloud data in safety-critical applications such as autonomous driving makes adversarial samples a real threat. Existing adversarial attacks on point clouds achieve high success rates but modify a large number of points, which is usually difficult to do in real-life scenarios. In this paper, we explore a family of attacks that only perturb a few points of an input point cloud, and name them nudge attacks. We demonstrate that nudge attacks can successfully flip the results of modern point-cloud DNNs. We present two variants, gradient-based and decision-based, showing their effectiveness in white-box and grey-box scenarios. Our extensive experiments show nudge attacks are effective at generating both targeted and untargeted adversarial point clouds, by changing a few points or even a single point from the entire point-cloud input. We find that with a single point we can reliably thwart predictions in 12--80% of cases, whereas 10 points allow us to further increase this to 37--95%. Finally, we discuss the possible defenses against such attacks, and explore their limitations.
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification
Tjandraatmadja, Christian, Anderson, Ross, Huchette, Joey, Ma, Will, Patel, Krunal, Vielma, Juan Pablo
We improve the effectiveness of propagation- and linear-optimization-based neural network verification algorithms with a new tightened convex relaxation for ReLU neurons. Unlike previous single-neuron relaxations which focus only on the univariate input space of the ReLU, our method considers the multivariate input space of the affine pre-activation function preceding the ReLU. Using results from submodularity and convex geometry, we derive an explicit description of the tightest possible convex relaxation when this multivariate input is over a box domain. We show that our convex relaxation is significantly stronger than the commonly used univariate-input relaxation which has been proposed as a natural convex relaxation barrier for verification. While our description of the relaxation may require an exponential number of inequalities, we show that they can be separated in linear time and hence can be efficiently incorporated into optimization algorithms on an as-needed basis. Based on this novel relaxation, we design two polynomial-time algorithms for neural network verification: a linear-programming-based algorithm that leverages the full power of our relaxation, and a fast propagation algorithm that generalizes existing approaches. In both cases, we show that for a modest increase in computational effort, our strengthened relaxation enables us to verify a significantly larger number of instances compared to similar algorithms.
Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing
Delarue, Arthur, Anderson, Ross, Tjandraatmadja, Christian
Value-function-based methods have long played an important role in reinforcement learning. However, finding the best next action given a value function of arbitrary complexity is nontrivial when the action space is too large for enumeration. We develop a framework for value-function-based deep reinforcement learning with a combinatorial action space, in which the action selection problem is explicitly formulated as a mixed-integer optimization problem. As a motivating example, we present an application of this framework to the capacitated vehicle routing problem (CVRP), a combinatorial optimization problem in which a set of locations must be covered by a single vehicle with limited capacity. On each instance, we model an action as the construction of a single route, and consider a deterministic policy which is improved through a simple policy iteration algorithm. Our approach is competitive with other reinforcement learning methods and achieves an average gap of 1.7% with state-of-the-art OR methods on standard library instances of medium size.
Sponge Examples: Energy-Latency Attacks on Neural Networks
Shumailov, Ilia, Zhao, Yiren, Bates, Daniel, Papernot, Nicolas, Mullins, Robert, Anderson, Ross
The high energy costs of neural network training and inference led to the use of acceleration hardware such as GPUs and TPUs. While this enabled us to train large-scale neural networks in datacenters and deploy them on edge devices, the focus so far is on average-case performance. In this work, we introduce a novel threat vector against neural networks whose energy consumption or decision latency are critical. We show how adversaries can exploit carefully crafted $\boldsymbol{sponge}~\boldsymbol{examples}$, which are inputs designed to maximise energy consumption and latency. We mount two variants of this attack on established vision and language models, increasing energy consumption by a factor of 10 to 200. Our attacks can also be used to delay decisions where a network has critical real-time performance, such as in perception for autonomous vehicles. We demonstrate the portability of our malicious inputs across CPUs and a variety of hardware accelerator chips including GPUs, and an ASIC simulator. We conclude by proposing a defense strategy which mitigates our attack by shifting the analysis of energy consumption in hardware from an average-case to a worst-case perspective.