Goto

Collaborating Authors

 Anderson, Greg


Certifiably Robust Reinforcement Learning through Model-Based Abstract Interpretation

arXiv.org Artificial Intelligence

We present a reinforcement learning (RL) framework in which the learned policy comes with a machine-checkable certificate of provable adversarial robustness. Our approach, called CAROL, learns a model of the environment. In each learning iteration, it uses the current version of this model and an external abstract interpreter to construct a differentiable signal for provable robustness. This signal is used to guide learning, and the abstract interpretation used to construct it directly leads to the robustness certificate returned at convergence. We give a theoretical analysis that bounds the worst-case accumulative reward of CAROL. We also experimentally evaluate CAROL on four MuJoCo environments with continuous state and action spaces. On these tasks, CAROL learns policies that, when contrasted with policies from the state-of-the-art robust RL algorithms, exhibit: (i) markedly enhanced certified performance lower bounds; and (ii) comparable performance under empirical adversarial attacks.


Guiding Safe Exploration with Weakest Preconditions

arXiv.org Artificial Intelligence

In reinforcement learning for safety-critical settings, it is often desirable for the agent to obey safety constraints at all points in time, including during training. We evaluate the approach on a suite of continuous control benchmarks and show that it can achieve comparable performance to existing safe learning techniques while incurring fewer safety violations. In many real-world applications of reinforcement learning (RL), it is crucial for the agent to behave safely during training. Over the years, a body of safe exploration techniques (Garcıa & Fernández, 2015) has emerged to address this challenge. Broadly, these methods aim to converge to highperformance policies while ensuring that every intermediate policy seen during learning satisfies a set of safety constraints. Recent work has developed neural versions of these methods (Achiam et al., 2017; Dalal et al., 2018; Bharadhwaj et al., 2021) that can handle continuous state spaces and complex policy classes. Any method for safe exploration needs a mechanism for deciding if an action can be safely executed at a given state. Some existing approaches use prior knowledge about system dynamics (Berkenkamp et al., 2017; Anderson et al., 2020) to make such judgments.


Neurosymbolic Reinforcement Learning with Formally Verified Exploration

arXiv.org Machine Learning

We present Revel, a partially neural reinforcement learning (RL) framework for provably safe exploration in continuous state and action spaces. A key challenge for provably safe deep RL is that repeatedly verifying neural networks within a learning loop is computationally infeasible. We address this challenge using two policy classes: a general, neurosymbolic class with approximate gradients and a more restricted class of symbolic policies that allows efficient verification. Our learning algorithm is a mirror descent over policies: in each iteration, it safely lifts a symbolic policy into the neurosymbolic space, performs safe gradient updates to the resulting policy, and projects the updated policy into the safe symbolic subset, all without requiring explicit verification of neural networks. Our empirical results show that Revel enforces safe exploration in many scenarios in which Constrained Policy Optimization does not, and that it can discover policies that outperform those learned through prior approaches to verified exploration.