Goto

Collaborating Authors

 Andersen, Michael Riis


On Local Posterior Structure in Deep Ensembles

arXiv.org Machine Learning

Bayesian Neural Networks (BNNs) often improve model calibration and predictive uncertainty quantification compared to point estimators such as maximum-a-posteriori (MAP). Similarly, deep ensembles (DEs) are also known to improve calibration, and therefore, it is natural to hypothesize that deep ensembles of BNNs (DE-BNNs) should provide even further improvements. In this work, we systematically investigate this across a number of datasets, neural network architectures, and BNN approximation methods and surprisingly find that when the ensembles grow large enough, DEs consistently outperform DE-BNNs on in-distribution data. To shine light on this observation, we conduct several sensitivity and ablation studies. Moreover, we show that even though DE-BNNs outperform DEs on out-of-distribution metrics, this comes at the cost of decreased in-distribution performance. As a final contribution, we open-source the large pool of trained models to facilitate further research on this topic.


EB-NeRD: A Large-Scale Dataset for News Recommendation

arXiv.org Artificial Intelligence

Personalized content recommendations have been pivotal to the content experience in digital media from video streaming to social networks. However, several domain specific challenges have held back adoption of recommender systems in news publishing. To address these challenges, we introduce the Ekstra Bladet News Recommendation Dataset (EB-NeRD). The dataset encompasses data from over a million unique users and more than 37 million impression logs from Ekstra Bladet. It also includes a collection of over 125,000 Danish news articles, complete with titles, abstracts, bodies, and metadata, such as categories. EB-NeRD served as the benchmark dataset for the RecSys '24 Challenge, where it was demonstrated how the dataset can be used to address both technical and normative challenges in designing effective and responsible recommender systems for news publishing. The dataset is available at: https://recsys.eb.dk.


RecSys Challenge 2024: Balancing Accuracy and Editorial Values in News Recommendations

arXiv.org Artificial Intelligence

The RecSys Challenge 2024 aims to advance news recommendation by addressing both the technical and normative challenges inherent in designing effective and responsible recommender systems for news publishing. This paper describes the challenge, including its objectives, problem setting, and the dataset provided by the Danish news publishers Ekstra Bladet and JP/Politikens Media Group ("Ekstra Bladet"). The challenge explores the unique aspects of news recommendation, such as modeling user preferences based on behavior, accounting for the influence of the news agenda on user interests, and managing the rapid decay of news items. Additionally, the challenge embraces normative complexities, investigating the effects of recommender systems on news flow and their alignment with editorial values. We summarize the challenge setup, dataset characteristics, and evaluation metrics. Finally, we announce the winners and highlight their contributions. The dataset is available at: https://recsys.eb.dk.


Neural machine translation for automated feedback on children's early-stage writing

arXiv.org Artificial Intelligence

In this work, we address the problem of assessing and constructing feedback for early-stage writing automatically using machine learning. Early-stage writing is typically vastly different from conventional writing due to phonetic spelling and lack of proper grammar, punctuation, spacing etc. Consequently, early-stage writing is highly non-trivial to analyze using common linguistic metrics. We propose to use sequence-to-sequence models for "translating" early-stage writing by students into "conventional" writing, which allows the translated text to be analyzed using linguistic metrics. Furthermore, we propose a novel robust likelihood to mitigate the effect of noise in the dataset. We investigate the proposed methods using a set of numerical experiments and demonstrate that the conventional text can be predicted with high accuracy.


Polygonizer: An auto-regressive building delineator

arXiv.org Artificial Intelligence

In geospatial planning, it is often essential to represent objects in a vectorized format, as this format easily translates to downstream tasks such as web development, graphics, or design. While these problems are frequently addressed using semantic segmentation, which requires additional post-processing to vectorize objects in a non-trivial way, we present an Image-to-Sequence model that allows for direct shape inference and is ready for vector-based workflows out of the box. We demonstrate the model's performance in various ways, including perturbations to the image input that correspond to variations or artifacts commonly encountered in remote sensing applications. Our model outperforms prior works when using ground truth bounding boxes (one object per image) achieving the lowest maximum tangent angle error. The application of deep learning in the surveying and analysis of objects has experienced considerable advancements.


Learning to Generate 3D Representations of Building Roofs Using Single-View Aerial Imagery

arXiv.org Artificial Intelligence

We present a novel pipeline for learning the conditional distribution of a building roof mesh given pixels from an aerial image, under the assumption that roof geometry follows a set of regular patterns. Unlike alternative methods that require multiple images of the same object, our approach enables estimating 3D roof meshes using only a single image for predictions. The approach employs the PolyGen, a deep generative transformer architecture for 3D meshes. We apply this model in a new domain and investigate the sensitivity of the image resolution. We propose a novel metric to evaluate the performance of the inferred meshes, and our results show that the model is robust even at lower resolutions, while qualitatively producing realistic representations for out-of-distribution samples.


On the role of Model Uncertainties in Bayesian Optimization

arXiv.org Artificial Intelligence

Probabilistic machine learning provides a framework in which it is possible to reason about uncertainty for both models and predictions (Ghahramani, 2015). It is often argued that especially in high-stakes applications (healthcare, robotics, etc.), uncertainty estimates for decisions/predictions should be a central component and that they should be well-calibrated (Kuleshov and Deshpande, 2022). The intuition behind calibration is that the uncertainty estimates should accurately reflect the reality; for example if a classification model predicts 80% probability of belonging to class A on 10 datapoints, then (on average) we would expect 8 of those 10 samples actually belong to class A. Likewise - but less intuitively - in regression, if a calibrated model generates a prediction µ and uncertainty estimate σ, we would see p percent of the data lying inside a p percentile confidence interval of µ (Busk et al., 2021). In general, uncertainty can be divided into aleatoric (irreducible inherent randomness in the data-generating process) and epistemic (lack of knowledge, i.e. it can be reduced if more data is collected) (Hüllermeier and Waegeman, 2021). However, this distinction is rarely used when evaluating uncertainty estimates for regression tasks and although this has been critiqued (Sluijterman et al., 2021), it is highly non-trivial to achieve for real-world applications because it normally requires access to the underlying true function. Uncertainty also plays a central role Bayesian Optimization (BO) (Snoek et al., 2012), which will be the focus of this paper. As a sequential design strategy for global optimization, BO has several applications with perhaps the most popular ones being general experimental design (Shahriari et al., 2015) and model selection for machine learning


SolarDK: A high-resolution urban solar panel image classification and localization dataset

arXiv.org Artificial Intelligence

The body of research on classification of solar panel arrays from aerial imagery is increasing, yet there are still not many public benchmark datasets. This paper introduces two novel benchmark datasets for classifying and localizing solar panel arrays in Denmark: A human annotated dataset for classification and segmentation, as well as a classification dataset acquired using self-reported data from the Danish national building registry. We explore the performance of prior works on the new benchmark dataset, and present results after fine-tuning models using a similar approach as recent works. Furthermore, we train models of newer architectures and provide benchmark baselines to our datasets in several scenarios. We believe the release of these datasets may improve future research in both local and global geospatial domains for identifying and mapping of solar panel arrays from aerial imagery. The data is accessible at https://osf.io/aj539/.


Challenges and Opportunities in High-dimensional Variational Inference

arXiv.org Machine Learning

We explore the limitations of and best practices for using black-box variational inference to estimate posterior summaries of the model parameters. By taking an importance sampling perspective, we are able to explain and empirically demonstrate: 1) why the intuitions about the behavior of approximate families and divergences for low-dimensional posteriors fail for higher-dimensional posteriors, 2) how we can diagnose the pre-asymptotic reliability of variational inference in practice by examining the behavior of the density ratios (i.e., importance weights), 3) why the choice of variational objective is not as relevant for higher-dimensional posteriors, and 4) why, although flexible variational families can provide some benefits in higher dimensions, they also introduce additional optimization challenges. Based on these findings, for high-dimensional posteriors we recommend using the exclusive KL divergence that is most stable and easiest to optimize, and then focusing on improving the variational family or using model parameter transformations to make the posterior more similar to the approximating family. Our results also show that in low to moderate dimensions, heavy-tailed variational families and mass-covering divergences can increase the chances that the approximation can be improved by importance sampling.


Robust, Accurate Stochastic Optimization for Variational Inference

arXiv.org Machine Learning

We consider the problem of fitting variational posterior approximations using stochastic optimization methods. The performance of these approximations depends on (1) how well the variational family matches the true posterior distribution, (2) the choice of divergence, and (3) the optimization of the variational objective. We show that even in the best-case scenario when the exact posterior belongs to the assumed variational family, common stochastic optimization methods lead to poor variational approximations if the problem dimension is moderately large. We also demonstrate that these methods are not robust across diverse model types. Motivated by these findings, we develop a more robust and accurate stochastic optimization framework by viewing the underlying optimization algorithm as producing a Markov chain. Our approach is theoretically motivated and includes a diagnostic for convergence and a novel stopping rule, both of which are robust to noisy evaluations of the objective function. We show empirically that the proposed framework works well on a diverse set of models: it can automatically detect stochastic optimization failure or inaccurate variational approximation.