Goto

Collaborating Authors

 Ancona, Marco


Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation

arXiv.org Machine Learning

The problem of explaining the behavior of deep neural networks has gained a lot of attention over the last years. While several attribution methods have been proposed, most come without strong theoretical foundations. This raises the question of whether the resulting attributions are reliable. On the other hand, the literature on cooperative game theory suggests Shapley values as a unique way of assigning relevance scores such that certain desirable properties are satisfied. Previous works on attribution methods also showed that explanations based on Shapley values better agree with the human intuition. Unfortunately, the exact evaluation of Shapley values is prohibitively expensive, exponential in the number of input features. In this work, by leveraging recent results on uncertainty propagation, we propose a novel, polynomial-time approximation of Shapley values in deep neural networks. We show that our method produces significantly better approximations of Shapley values than existing state-of-the-art attribution methods.


Towards better understanding of gradient-based attribution methods for Deep Neural Networks

arXiv.org Machine Learning

Understanding the flow of information in Deep Neural Networks (DNNs) is a challenging problem that has gain increasing attention over the last few years. While several methods have been proposed to explain network predictions, there have been only a few attempts to compare them from a theoretical perspective. What is more, no exhaustive empirical comparison has been performed in the past. In this work, we analyze four gradient-based attribution methods and formally prove conditions of equivalence and approximation between them. By reformulating two of these methods, we construct a unified framework which enables a direct comparison, as well as an easier implementation. Finally, we propose a novel evaluation metric, called Sensitivity-n and test the gradient-based attribution methods alongside with a simple perturbation-based attribution method on several datasets in the domains of image and text classification, using various network architectures.