Goto

Collaborating Authors

 Anastasiou, Chrysovalantis


BIG-Bench Extra Hard

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly deployed in everyday applications, demanding robust general reasoning capabilities and diverse reasoning skillset. However, current LLM reasoning benchmarks predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various models on BBEH and observe a (harmonic) average accuracy of 9.8\% for the best general-purpose model and 44.8\% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.


MetisFL: An Embarrassingly Parallelized Controller for Scalable & Efficient Federated Learning Workflows

arXiv.org Artificial Intelligence

A Federated Learning (FL) system typically consists of two core processing entities: the federation controller and the learners. The controller is responsible for managing the execution of FL workflows across learners and the learners for training and evaluating federated models over their private datasets. While executing an FL workflow, the FL system has no control over the computational resources or data of the participating learners. Still, it is responsible for other operations, such as model aggregation, task dispatching, and scheduling. These computationally heavy operations generally need to be handled by the federation controller. Even though many FL systems have been recently proposed to facilitate the development of FL workflows, most of these systems overlook the scalability of the controller. To meet this need, we designed and developed a novel FL system called MetisFL, where the federation controller is the first-class citizen. MetisFL re-engineers all the operations conducted by the federation controller to accelerate the training of large-scale FL workflows. By quantitatively comparing MetisFL against other state-of-the-art FL systems, we empirically demonstrate that MetisFL leads to a 10-fold wall-clock time execution boost across a wide range of challenging FL workflows with increasing model sizes and federation sites.