Anand, Vishal
Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
Alshomary, Milad, Varimalla, Nikhil Reddy, Anand, Vishal, McKeown, Kathleen
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
Explicit and Implicit Semantic Ranking Framework
Zhu, Xiaofeng, Lin, Thomas, Anand, Vishal, Calderwood, Matthew, Clausen-Brown, Eric, Lueck, Gord, Yim, Wen-wai, Wu, Cheng
The core challenge in numerous real-world applications is to match an inquiry to the best document from a mutable and finite set of candidates. Existing industry solutions, especially latency-constrained services, often rely on similarity algorithms that sacrifice quality for speed. In this paper we introduce a generic semantic learning-to-rank framework, Self-training Semantic Cross-attention Ranking (sRank). This transformer-based framework uses linear pairwise loss with mutable training batch sizes and achieves quality gains and high efficiency, and has been applied effectively to show gains on two industry tasks at Microsoft over real-world large-scale data sets: Smart Reply (SR) and Ambient Clinical Intelligence (ACI). In Smart Reply, $sRank$ assists live customers with technical support by selecting the best reply from predefined solutions based on consumer and support agent messages. It achieves 11.7% gain in offline top-one accuracy on the SR task over the previous system, and has enabled 38.7% time reduction in composing messages in telemetry recorded since its general release in January 2021. In the ACI task, sRank selects relevant historical physician templates that serve as guidance for a text summarization model to generate higher quality medical notes. It achieves 35.5% top-one accuracy gain, along with 46% relative ROUGE-L gain in generated medical notes.
PreDisM: Pre-Disaster Modelling With CNN Ensembles for At-Risk Communities
Anand, Vishal, Miura, Yuki
The machine learning community has recently had increased interest in the climate and disaster damage domain due to a marked increased occurrences of natural hazards (e.g., hurricanes, forest fires, floods, earthquakes). However, not enough attention has been devoted to mitigating probable destruction from impending natural hazards. We explore this crucial space by predicting building-level damages on a before-the-fact basis that would allow state actors and non-governmental organizations to be best equipped with resource distribution to minimize or preempt losses. We introduce PreDisM that employs an ensemble of ResNets and fully connected layers over decision trees to capture image-level and meta-level information to accurately estimate weakness of man-made structures to disaster-occurrences. Our model performs well and is responsive to tuning across types of disasters and highlights the space of preemptive hazard damage modelling.