Goto

Collaborating Authors

 Anagnostopoulos, Christos


Artificial Intelligence-Driven Clinical Decision Support Systems

arXiv.org Artificial Intelligence

As artificial intelligence (AI) becomes increasingly embedded in healthcare delivery, this chapter explores the critical aspects of developing reliable and ethical Clinical Decision Support Systems (CDSS). Beginning with the fundamental transition from traditional statistical models to sophisticated machine learning approaches, this work examines rigorous validation strategies and performance assessment methods, including the crucial role of model calibration and decision curve analysis. The chapter emphasizes that creating trustworthy AI systems in healthcare requires more than just technical accuracy; it demands careful consideration of fairness, explainability, and privacy. The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models. The chapter then delves into explainability as a cornerstone of human-centered CDSS. This focus reflects the understanding that healthcare professionals must not only trust AI recommendations but also comprehend their underlying reasoning. The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations. The text explores privacy-preservation strategies such as differential privacy and federated learning, while acknowledging the inherent trade-offs between privacy protection and model performance. This progression, from technical validation to ethical considerations, reflects the multifaceted challenges of developing AI systems that can be seamlessly and reliably integrated into daily clinical practice while maintaining the highest standards of patient care and data protection.


Personalized Federated Learning for Cross-view Geo-localization

arXiv.org Artificial Intelligence

In this paper we propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques. We address the challenges of data privacy and heterogeneity in autonomous vehicle environments by proposing a personalized Federated Learning scenario that allows selective sharing of model parameters. Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments. We evaluate our approach against traditional centralized and single-client training schemes using the KITTI dataset combined with satellite imagery. Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy. The proposed partial model sharing strategy shows comparable or slightly better performance than classical FL, offering significant reduced communication overhead without sacrificing accuracy. Our work contributes to more robust and privacy-preserving localization systems for autonomous vehicles operating in diverse environments


Federated Data-Driven Kalman Filtering for State Estimation

arXiv.org Artificial Intelligence

This paper proposes a novel localization framework based on collaborative training or federated learning paradigm, for highly accurate localization of autonomous vehicles. More specifically, we build on the standard approach of KalmanNet, a recurrent neural network aiming to estimate the underlying system uncertainty of traditional Extended Kalman Filtering, and reformulate it by the adapt-then-combine concept to FedKalmanNet. The latter is trained in a distributed manner by a group of vehicles (or clients), with local training datasets consisting of vehicular location and velocity measurements, through a global server aggregation operation. The FedKalmanNet is then used by each vehicle to localize itself, by estimating the associated system uncertainty matrices (i.e, Kalman gain). Our aim is to actually demonstrate the benefits of collaborative training for state estimation in autonomous driving, over collaborative decision-making which requires rich V2X communication resources for measurement exchange and sensor fusion under real-time constraints. An extensive experimental and evaluation study conducted in CARLA autonomous driving simulator highlights the superior performance of FedKalmanNet over state-of-the-art collaborative decision-making approaches, in localizing vehicles without the need of real-time V2X communication.


Decentralized Personalized Federated Learning based on a Conditional Sparse-to-Sparser Scheme

arXiv.org Artificial Intelligence

Decentralized Federated Learning (DFL) has become popular due to its robustness and avoidance of centralized coordination. In this paradigm, clients actively engage in training by exchanging models with their networked neighbors. However, DFL introduces increased costs in terms of training and communication. Existing methods focus on minimizing communication often overlooking training efficiency and data heterogeneity. To address this gap, we propose a novel \textit{sparse-to-sparser} training scheme: DA-DPFL. DA-DPFL initializes with a subset of model parameters, which progressively reduces during training via \textit{dynamic aggregation} and leads to substantial energy savings while retaining adequate information during critical learning periods. Our experiments showcase that DA-DPFL substantially outperforms DFL baselines in test accuracy, while achieving up to $5$ times reduction in energy costs. We provide a theoretical analysis of DA-DPFL's convergence by solidifying its applicability in decentralized and personalized learning. The code is available at:https://github.com/EricLoong/da-dpfl


FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization

arXiv.org Artificial Intelligence

Federated Learning (FL) has been successfully adopted for distributed training and inference of large-scale Deep Neural Networks (DNNs). However, DNNs are characterized by an extremely large number of parameters, thus, yielding significant challenges in exchanging these parameters among distributed nodes and managing the memory. Although recent DNN compression methods (e.g., sparsification, pruning) tackle such challenges, they do not holistically consider an adaptively controlled reduction of parameter exchange while maintaining high accuracy levels. We, therefore, contribute with a novel FL framework (coined FedDIP), which combines (i) dynamic model pruning with error feedback to eliminate redundant information exchange, which contributes to significant performance improvement, with (ii) incremental regularization that can achieve \textit{extreme} sparsity of models. We provide convergence analysis of FedDIP and report on a comprehensive performance and comparative assessment against state-of-the-art methods using benchmark data sets and DNN models. Our results showcase that FedDIP not only controls the model sparsity but efficiently achieves similar or better performance compared to other model pruning methods adopting incremental regularization during distributed model training. The code is available at: https://github.com/EricLoong/feddip.


Max-Utility Based Arm Selection Strategy For Sequential Query Recommendations

arXiv.org Machine Learning

We consider the query recommendation problem in closed loop interactive learning settings like online information gathering and exploratory analytics. The problem can be naturally modelled using the Multi-Armed Bandits (MAB) framework with countably many arms. The standard MAB algorithms for countably many arms begin with selecting a random set of candidate arms and then applying standard MAB algorithms, e.g., UCB, on this candidate set downstream. We show that such a selection strategy often results in higher cumulative regret and to this end, we propose a selection strategy based on the maximum utility of the arms. We show that in tasks like online information gathering, where sequential query recommendations are employed, the sequences of queries are correlated and the number of potentially optimal queries can be reduced to a manageable size by selecting queries with maximum utility with respect to the currently executing query. Our experimental results using a recent real online literature discovery service log file demonstrate that the proposed arm selection strategy improves the cumulative regret substantially with respect to the state-of-the-art baseline algorithms.


An Intelligent Edge-Centric Queries Allocation Scheme based on Ensemble Models

arXiv.org Machine Learning

The combination of Internet of Things (IoT) and Edge Computing (EC) can assist in the delivery of novel applications that will facilitate end users activities. Data collected by numerous devices present in the IoT infrastructure can be hosted into a set of EC nodes becoming the subject of processing tasks for the provision of analytics. Analytics are derived as the result of various queries defined by end users or applications. Such queries can be executed in the available EC nodes to limit the latency in the provision of responses. In this paper, we propose a meta-ensemble learning scheme that supports the decision making for the allocation of queries to the appropriate EC nodes. Our learning model decides over queries' and nodes' characteristics. We provide the description of a matching process between queries and nodes after concluding the contextual information for each envisioned characteristic adopted in our meta-ensemble scheme. We rely on widely known ensemble models, combine them and offer an additional processing layer to increase the performance. The aim is to result a subset of EC nodes that will host each incoming query. Apart from the description of the proposed model, we report on its evaluation and the corresponding results. Through a large set of experiments and a numerical analysis, we aim at revealing the pros and cons of the proposed scheme.


On the Use of Interpretable Machine Learning for the Management of Data Quality

arXiv.org Artificial Intelligence

Data quality is a significant issue for any application that requests for analytics to support decision making. It becomes very important when we focus on Internet of Things (IoT) where numerous devices can interact to exchange and process data. IoT devices are connected to Edge Computing (EC) nodes to report the collected data, thus, we have to secure data quality not only at the IoT but also at the edge of the network. In this paper, we focus on the specific problem and propose the use of interpretable machine learning to deliver the features that are important to be based for any data processing activity. Our aim is to secure data quality, at least, for those features that are detected as significant in the collected datasets. We have to notice that the selected features depict the highest correlation with the remaining in every dataset, thus, they can be adopted for dimensionality reduction. We focus on multiple methodologies for having interpretability in our learning models and adopt an ensemble scheme for the final decision. Our scheme is capable of timely retrieving the final result and efficiently select the appropriate features. We evaluate our model through extensive simulations and present numerical results. Our aim is to reveal its performance under various experimental scenarios that we create varying a set of parameters adopted in our mechanism.