Goto

Collaborating Authors

 An, Sojung


Self-Supervised Learning with Probabilistic Density Labeling for Rainfall Probability Estimation

arXiv.org Artificial Intelligence

Numerical weather prediction (NWP) models are fundamental in meteorology for simulating and forecasting the behavior of various atmospheric variables. The accuracy of precipitation forecasts and the acquisition of sufficient lead time are crucial for preventing hazardous weather events. However, the performance of NWP models is limited by the nonlinear and unpredictable patterns of extreme weather phenomena driven by temporal dynamics. In this regard, we propose a \textbf{S}elf-\textbf{S}upervised \textbf{L}earning with \textbf{P}robabilistic \textbf{D}ensity \textbf{L}abeling (SSLPDL) for estimating rainfall probability by post-processing NWP forecasts. Our post-processing method uses self-supervised learning (SSL) with masked modeling for reconstructing atmospheric physics variables, enabling the model to learn the dependency between variables. The pre-trained encoder is then utilized in transfer learning to a precipitation segmentation task. Furthermore, we introduce a straightforward labeling approach based on probability density to address the class imbalance in extreme weather phenomena like heavy rain events. Experimental results show that SSLPDL surpasses other precipitation forecasting models in regional precipitation post-processing and demonstrates competitive performance in extending forecast lead times. Our code is available at https://github.com/joonha425/SSLPDL


Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting

arXiv.org Artificial Intelligence

Deep learning-based time series forecasting has dominated the short-term precipitation forecasting field with the help of its ability to estimate motion flow in high-resolution datasets. The growing interest in precipitation nowcasting offers substantial opportunities for the advancement of current forecasting technologies. Nevertheless, there has been a scarcity of in-depth surveys of time series precipitation forecasting using deep learning. Thus, this paper systemically reviews recent progress in time series precipitation forecasting models. Specifically, we investigate the following key points within background components, covering: i) preprocessing, ii) objective functions, and iii) evaluation metrics. We then categorize forecasting models into \textit{recursive} and \textit{multiple} strategies based on their approaches to predict future frames, investigate the impacts of models using the strategies, and performance assessments. Finally, we evaluate current deep learning-based models for precipitation forecasting on a public benchmark, discuss their limitations and challenges, and present some promising research directions. Our contribution lies in providing insights for a better understanding of time series precipitation forecasting and in aiding the development of robust AI solutions for the future.


Self-Supervised Pre-Training for Precipitation Post-Processor

arXiv.org Artificial Intelligence

Obtaining a sufficient forecast lead time for local precipitation is essential in preventing hazardous weather events. Global warming-induced climate change increases the challenge of accurately predicting severe precipitation events, such as heavy rainfall. In this paper, we propose a deep learning-based precipitation post-processor for numerical weather prediction (NWP) models. The precipitation post-processor consists of (i) employing self-supervised pre-training, where the parameters of the encoder are pre-trained on the reconstruction of the masked variables of the atmospheric physics domain; and (ii) conducting transfer learning on precipitation segmentation tasks (the target domain) from the pre-trained encoder. In addition, we introduced a heuristic labeling approach to effectively train class-imbalanced datasets. Our experiments on precipitation correction for regional NWP show that the proposed method outperforms other approaches.