Goto

Collaborating Authors

 An, Qi


Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond

arXiv.org Artificial Intelligence

This paper introduces Light-R1, an open-source suite for training long reasoning models using reproducible and cost-effective methodology. Given the proprietary nature of data used in the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively public data and models. Our curriculum training progressively increases data difficulty, combined with multi-staged post-training. Our Light-R1-32B model, trained from Qwen2.5-32B-Instruct, outperforms DeepSeek-R1-Distill-Qwen-32B in math reasoning. Experimental results show that this curriculum approach becomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilled models (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examples from our curriculum dataset yielded state-of-the-art 7B and 14B models, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPO on long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among 14B models in math, with AIME24 \& 25 scores of 74.0 and 60.2 respectively, surpassing many 32B models and DeepSeek-R1-Distill-Llama-70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significant advancement in making sophisticated reasoning models more accessible and implementable in real-world applications. Our models, training data and code have been made available at https://github.com/Qihoo360/Light-R1.


LEDD: Large Language Model-Empowered Data Discovery in Data Lakes

arXiv.org Artificial Intelligence

Data discovery in data lakes with ever increasing datasets has long been recognized as a big challenge in the realm of data management, especially for semantic search of and hierarchical global catalog generation of tables. While large language models (LLMs) facilitate the processing of data semantics, challenges remain in architecting an end-to-end system that comprehensively exploits LLMs for the two semantics-related tasks. In this demo, we propose LEDD, an end-to-end system with an extensible architecture that leverages LLMs to provide hierarchical global catalogs with semantic meanings and semantic table search for data lakes. Specifically, LEDD can return semantically related tables based on natural-language specification. These features make LEDD an ideal foundation for downstream tasks such as model training and schema linking for text-to-SQL tasks. LEDD also provides a simple Python interface to facilitate the extension and the replacement of data discovery algorithms.


State-Free Inference of State-Space Models: The Transfer Function Approach

arXiv.org Artificial Intelligence

We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.


Enhancement of Healthcare Data Performance Metrics using Neural Network Machine Learning Algorithms

arXiv.org Artificial Intelligence

Patients are often encouraged to make use of wearable devices for remote collection and monitoring of health data. This adoption of wearables results in a significant increase in the volume of data collected and transmitted. The battery life of the devices is then quickly diminished due to the high processing requirements of the devices. Given the importance attached to medical data, it is imperative that all transmitted data adhere to strict integrity and availability requirements. Reducing the volume of healthcare data for network transmission may improve sensor battery life without compromising accuracy. There is a trade-off between efficiency and accuracy which can be controlled by adjusting the sampling and transmission rates. This paper demonstrates that machine learning can be used to analyse complex health data metrics such as the accuracy and efficiency of data transmission to overcome the trade-off problem. The study uses time series nonlinear autoregressive neural network algorithms to enhance both data metrics by taking fewer samples to transmit. The algorithms were tested with a standard heart rate dataset to compare their accuracy and efficiency. The result showed that the Levenbery-Marquardt algorithm was the best performer with an efficiency of 3.33 and accuracy of 79.17%, which is similar to other algorithms accuracy but demonstrates improved efficiency. This proves that machine learning can improve without sacrificing a metric over the other compared to the existing methods with high efficiency.