Goto

Collaborating Authors

 An, Li


Towards Chapter-to-Chapter Context-Aware Literary Translation via Large Language Models

arXiv.org Artificial Intelligence

Discourse phenomena in existing document-level translation datasets are sparse, which has been a fundamental obstacle in the development of context-aware machine translation models. Moreover, most existing document-level corpora and context-aware machine translation methods rely on an unrealistic assumption on sentence-level alignments. To mitigate these issues, we first curate a novel dataset of Chinese-English literature, which consists of 160 books with intricate discourse structures. Then, we propose a more pragmatic and challenging setting for context-aware translation, termed chapter-to-chapter (Ch2Ch) translation, and investigate the performance of commonly-used machine translation models under this setting. Furthermore, we introduce a potential approach of finetuning large language models (LLMs) within the domain of Ch2Ch literary translation, yielding impressive improvements over baselines. Through our comprehensive analysis, we unveil that literary translation under the Ch2Ch setting is challenging in nature, with respect to both model learning methods and translation decoding algorithms.


Using Group Membership Markers for Group Identification

AAAI Conferences

We describe a system for automatically ranking documents by degree of militancy, designed as a tool both for finding militant websites and prioritizing the data found. We compare three ranking systems, one employing a small hand-selected vocabulary based on group membership markers used by insiders to identify members and member properties (us) and outsiders and threats (them), one with a much larger vocabulary, and another with a small vocabulary chosen by Mutual Information. We use the same vocabularies to build classifiers. The ranker that achieves the best correlations with human judgments uses the small us-them vocabulary. We confirm and extend recent results in sentiment analysis (paltoglou 2010), showing that a feature-weighting scheme taken from classical IR (TFIDF) produces the best ranking system; we also find, surprisingly, that adjusting these weights with SVM training, while producing a better classifier, produces a worse ranker. Increasing vocabulary size similarly improves classification (while worsening ranking).