An, Jiancheng
Onboard Terrain Classification via Stacked Intelligent Metasurface-Diffractive Deep Neural Networks from SAR Level-0 Raw Data
Liu, Mengbing, Li, Xin, An, Jiancheng, Yuen, Chau
This paper introduces a novel approach for real-time onboard terrain classification from Sentinel-1 (S1) level-0 raw In-phase/Quadrature (IQ) data, leveraging a Stacked Intelligent Metasurface (SIM) to perform inference directly in the analog wave domain. Unlike conventional digital deep neural networks, the proposed multi-layer Diffractive Deep Neural Network (D$^2$NN) setup implements automatic feature extraction as electromagnetic waves propagate through stacked metasurface layers. This design not only reduces reliance on expensive downlink bandwidth and high-power computing at terrestrial stations but also achieves performance levels around 90\% directly from the real raw IQ data, in terms of accuracy, precision, recall, and F1 Score. Our method therefore helps bridge the gap between next-generation remote sensing tasks and in-orbit processing needs, paving the way for computationally efficient remote sensing applications.
Radio Generation Using Generative Adversarial Networks with An Unrolled Design
Wang, Weidong, An, Jiancheng, Liao, Hongshu, Gan, Lu, Yuen, Chau
As a revolutionary generative paradigm of deep learning, generative adversarial networks (GANs) have been widely applied in various fields to synthesize realistic data. However, it is challenging for conventional GANs to synthesize raw signal data, especially in some complex cases. In this paper, we develop a novel GAN framework for radio generation called "Radio GAN". Compared to conventional methods, it benefits from three key improvements. The first is learning based on sampling points, which aims to model an underlying sampling distribution of radio signals. The second is an unrolled generator design, combined with an estimated pure signal distribution as a prior, which can greatly reduce learning difficulty and effectively improve learning precision. Finally, we present an energy-constrained optimization algorithm to achieve better training stability and convergence. Experimental results with extensive simulations demonstrate that our proposed GAN framework can effectively learn transmitter characteristics and various channel effects, thus accurately modeling for an underlying sampling distribution to synthesize radio signals of high quality.